Enzymes supported on ordered mesoporous solids: a special case of an inorganic–organic hybrid

The discovery in the late 1990s of ordered, high surface area silicas with pore sizes of 5 nm and above opened the way to the study of well-defined biomolecule–mesoporous silica hybrids. In particular, it has been possible to immobilize a range of small to medium size enzymes, such as proteases, lipases and peroxidases, via physisorption, encapsulation and tethering on the internal surfaces of the solids. Use has also been made of silicas functionalized for this purpose. In many cases the immobilized enzymes are both active and re-usable. Here we review the studies on enzymes immobilized on ordered mesoporous solids and assess the need for careful studies in real applications. Furthermore, we note the emerging applications of related biomolecule–mesoporous solid hybrids in other applications, such as intracellular drug delivery and transfection technology.

[1]  Kwong-Yu Chan,et al.  Enzyme immobilization on amino-functionalized mesostructured cellular foam surfaces, characterization and catalytic properties , 2005 .

[2]  L. A. G. Serrano,et al.  Immobilization of cytochrome P-450 on MCM-41 with different silicon/aluminum ratios , 2005 .

[3]  P. Smirniotis,et al.  Protein adsorption on the mesoporous molecular sieve silicate SBA-15: effects of pH and pore size. , 2005, Journal of chromatography. A.

[4]  B. K. Hodnett,et al.  The adsorption characteristics, activity and stability of trypsin onto mesoporous silicates , 2005 .

[5]  Frank Caruso,et al.  Mesoporous Silica Spheres as Supports for Enzyme Immobilization and Encapsulation , 2005 .

[6]  R. Jasra,et al.  Studies on the activity and stability of immobilized α-amylase in ordered mesoporous silicas , 2005 .

[7]  X. Zhao,et al.  Functionalized nanoporous silicas for the immobilization of penicillin acylase , 2004 .

[8]  Victor S-Y Lin,et al.  A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. , 2004, Journal of the American Chemical Society.

[9]  Luyan Zhang,et al.  Immobilization of enzymes in mesoporous materials: controlling the entrance to nanospace , 2004 .

[10]  X. Duan,et al.  Immobilization of lipase in a mesoporous reactor based on MCM-41 , 2004 .

[11]  Zhihui Dai,et al.  Direct electrochemistry and electrocatalysis of myoglobin immobilized on a hexagonal mesoporous silica matrix. , 2004, Analytical biochemistry.

[12]  D. Zhao,et al.  Electrochemistry and biosensing reactivity of heme proteins adsorbed on the structure-tailored mesoporous Nb2O5 matrix , 2004 .

[13]  R. M. Blanco,et al.  Functionalization of mesoporous silica for lipase immobilization: Characterization of the support and the catalysts , 2004 .

[14]  Yajun Wang,et al.  Enzyme encapsulation in nanoporous silica spheres. , 2004, Chemical communications.

[15]  H. Amenitsch,et al.  In situ synchrotron small-angle X-ray scattering/X-ray diffraction study of the formation of SBA-15 mesoporous silica. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[16]  M. Hartmann,et al.  Adsorption of Lysozyme over Mesoporous Molecular Sieves MCM-41 and SBA-15: Influence of pH and Aluminum Incorporation , 2004 .

[17]  Zhihui Dai,et al.  Direct electron transfer and enzymatic activity of hemoglobin in a hexagonal mesoporous silica matrix. , 2004, Biosensors & bioelectronics.

[18]  Rajesh R Naik,et al.  Enzyme immobilization in a biomimetic silica support , 2004, Nature Biotechnology.

[19]  Shuming Nie,et al.  Doping Mesoporous Materials with Multicolor Quantum Dots , 2003 .

[20]  M. Hartmann,et al.  Adsorption of Cytochrome C on New Mesoporous Carbon Molecular Sieves , 2003 .

[21]  D. Zhao,et al.  Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties. , 2003, Angewandte Chemie.

[22]  B. K. Hodnett,et al.  Transesterification Catalyzed by Trypsin Supported on MCM-41 , 2003 .

[23]  J. Werckmann,et al.  Small-Angle X-ray Scattering and Electron Microscopy Investigation of Silica and Carbon Replicas with Ordered Porosity , 2003 .

[24]  J. Devoisselle,et al.  The potential of ordered mesoporous silica for the storage of drugs: the example of a pentapeptide encapsulated in a MSU-tween 80. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[25]  Yu-Fen Zhao,et al.  The use of crude lipase in deprotection of C-terminal protecting groups , 2002 .

[26]  Feng Gao,et al.  Room-temperature synthesis in acidic media of large-pore three-dimensional bicontinuous mesoporous silica with Ia3d symmetry. , 2002, Angewandte Chemie.

[27]  Jun Liu,et al.  Entrapping enzyme in a functionalized nanoporous support. , 2002, Journal of the American Chemical Society.

[28]  M. Jaroniec,et al.  Determination of Mesopore Size Distributions from Argon Adsorption Data at 77 K , 2002 .

[29]  Lubbert Dijkhuizen,et al.  Properties and applications of starch-converting enzymes of the α-amylase family , 2002 .

[30]  D. Zhao,et al.  Biomolecule separation using large pore mesoporous SBA-15 as a substrate in high performance liquid chromatography. , 2002, Chemical communications.

[31]  Jordan T. Watson,et al.  Catalytic activity of mesoporous silicate-immobilized chloroperoxidase , 2002 .

[32]  K. Jamil,et al.  Mesoporous molecular sieve (MCM-41) as support material for microbial cell immobilization and transformation of 2,4,6-trinitrotoluene (TNT): a novel system for whole cell immobilization , 2001 .

[33]  P. Wright,et al.  Enzyme immobilisation using SBA-15 mesoporous molecular sieves with functionalised surfaces , 2001 .

[34]  B. Davison,et al.  Enzyme stabilization by covalent binding in nanoporous sol-gel glass for nonaqueous biocatalysis. , 2001, Biotechnology and bioengineering.

[35]  P. Wright,et al.  Enzyme immobilisation using siliceous mesoporous molecular sieves , 2001 .

[36]  Haruo Takahashi,et al.  New immobilization method for enzyme stabilization involving a mesoporous material and an organic/inorganic hybrid gel , 2000, Biotechnology Letters.

[37]  Chengyue Li,et al.  A new support for the immobilization of penicillin acylase , 2000 .

[38]  T. Kajino,et al.  Catalytic Activity in Organic Solvents and Stability of Immobilized Enzymes Depend on the Pore Size and Surface Characteristics of Mesoporous Silica , 2000 .

[39]  K. Balkus,et al.  Cytochrome c immobilization into mesoporous molecular sieves , 2000 .

[40]  Brian J. Melde,et al.  Hybrid Inorganic–Organic Mesoporous Silicates—Nanoscopic Reactors Coming of Age , 2000 .

[41]  Dongyuan Zhao,et al.  Hexagonal to Mesocellular Foam Phase Transition in Polymer-Templated Mesoporous Silicas , 2000 .

[42]  G. Carrea,et al.  Properties and Synthetic Applications of Enzymes in Organic Solvents. , 2000, Angewandte Chemie.

[43]  Zhihong Liu,et al.  Highly sensitive spectrofluorimetric determination of ascorbic acid based on its enhancement effect on a mimetic enzyme-catalyzed reaction , 2000 .

[44]  T. Su,et al.  Adsorption of Lysozyme onto the Silicon Oxide Surface Chemically Grafted with a Monolayer of Pentadecyl-1-ol , 2000 .

[45]  Galen D. Stucky,et al.  MESOPOROUS SILICATE SEQUESTRATION AND RELEASE OF PROTEINS , 1999 .

[46]  A. Stein,et al.  Comparative Studies of Grafting and Direct Syntheses of Inorganic−Organic Hybrid Mesoporous Materials , 1999 .

[47]  W. Tischer,et al.  Immobilized enzymes: crystals or carriers? , 1999, Trends in biotechnology.

[48]  S. Colonna,et al.  Recent biotechnological developments in the use of peroxidases. , 1999, Trends in biotechnology.

[49]  Thomas,et al.  The Adsorption of Lysozyme at the Silica-Water Interface: A Neutron Reflection Study. , 1998, Journal of colloid and interface science.

[50]  Bradley F. Chmelka,et al.  Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures , 1998 .

[51]  Fredrickson,et al.  Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores , 1998, Science.

[52]  Avelino Corma,et al.  From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. , 1997, Chemical reviews.

[53]  K. Balkus,et al.  Enzyme immobilization in MCM-41 molecular sieve , 1996 .

[54]  A. Butler,et al.  Inactivation of vanadium bromoperoxidase: formation of 2-oxohistidine. , 1996, Biochemistry.

[55]  Avelino Corma,et al.  Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions , 1995 .

[56]  M. Franssen Haloperoxidases: useful catalysts for halogenation and oxidation reactions , 1994 .

[57]  John Meurig Thomas The chemistry of crystalline sponges , 1994, Nature.

[58]  E. Katchalski‐Katzir,et al.  Immobilized enzymes--learning from past successes and failures. , 1993, Trends in biotechnology.

[59]  H. Weetall,et al.  Preparation of immobilized proteins covalently coupled through silane coupling agents to inorganic supports , 1993, Applied biochemistry and biotechnology.

[60]  J. B. Higgins,et al.  A new family of mesoporous molecular sieves prepared with liquid crystal templates , 1992 .

[61]  J. S. Beck,et al.  Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism , 1992, Nature.

[62]  R. Takeuchi,et al.  Hydroformylation of alkenes having organosilicon substituents , 1990 .

[63]  P. Gunasekaran,et al.  Recent biotechnological interventions for developing improved penicillin G acylases. , 2004, Journal of bioscience and bioengineering.

[64]  E. knyazeva,et al.  Adsorption of peroxidase on mesoporous silicate , 2004 .

[65]  M. Kantam,et al.  Highly Efficient “Tight Fit” Immobilization of α‐Chymotrypsin in Mesoporous MCM‐41: A Novel Approach Using Precursor Immobilization and Activation , 2003, Biotechnology progress.

[66]  E. A. Miranda,et al.  Gas-phase enzymatic esterification on immobilized lipases in MCM-41 molecular sieves , 2002 .

[67]  C. Botting,et al.  Size selective protein adsorption on thiol-functionalised SBA-15 mesoporous molecular sieve , 2001 .

[68]  J. Clark,et al.  Modified silicas for clean technology , 2000 .

[69]  Bradley F. Chmelka,et al.  MESOCELLULAR SILICEOUS FOAMS WITH UNIFORMLY SIZED CELLS AND WINDOWS , 1999 .

[70]  D. B. Jackson,et al.  Organomodified hexagonal mesoporous silicates , 1999 .

[71]  D. Combes,et al.  Immobilization of Lipase from Rhizopus Niveus: A Way to Enhance its Synthetic Activity in Organic Solvent , 1999 .

[72]  Frank Wedekind,et al.  Immobilized Enzymes: Methods and Applications , 1999 .

[73]  K. Balkus,et al.  Mesoporous molecular sieve immobilized enzymes , 1998 .