Diameters of random circulant graphs

The diameter of a graph measures the maximal distance between any pair of vertices. The diameters of many small-world networks, as well as a variety of other random graph models, grow logarithmically in the number of nodes. In contrast, the worst connected networks are cycles whose diameters increase linearly in the number of nodes. In the present study we consider an intermediate class of examples: Cayley graphs of cyclic groups, also known as circulant graphs or multi-loop networks. We show that the diameter of a random circulant 2k-regular graph with n vertices scales as n1/k, and establish a limit theorem for the distribution of their diameters. We obtain analogous results for the distribution of the average distance and higher moments.

[1]  Fan Chung Graham,et al.  The Diameter of Sparse Random Graphs , 2001, Adv. Appl. Math..

[2]  Béla Bollobás,et al.  The diameter of random regular graphs , 1982, Comb..

[3]  Iskander Aliev,et al.  An optimal lower bound for the Frobenius problem , 2005 .

[4]  Albert Nijenhuis A Minimal-Path Algorithm for the “Money Changing Problem” , 1979 .

[5]  Linyuan Lu,et al.  The diameter of random massive graphs , 2001, SODA '01.

[6]  Gideon Amir,et al.  The diameter of a random Cayley graph of ℤ q , 2010, Groups Complex. Cryptol..

[7]  Randall Dougherty,et al.  The Degree-Diameter Problem for Several Varieties of Cayley Graphs I: The Abelian Case , 2004, SIAM J. Discret. Math..

[8]  Sueli I. R. Costa,et al.  Circulant graphs and tessellations on flat tori , 2010 .

[9]  Akshay Venkatesh,et al.  Small solutions to linear congruences and Hecke equidistribution , 2005 .

[10]  J. Marklof,et al.  The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems , 2007, 0706.4395.

[11]  Feng Xue,et al.  On the connectivity and diameter of small-world networks , 2007, Advances in Applied Probability.

[12]  Mathieu Dutour Sikiric,et al.  A generalization of Voronoi's reduction theory and its application , 2006 .

[13]  Andreas Strömbergsson On the limit distribution of Frobenius numbers , 2011 .

[14]  Y. Peres,et al.  Critical random graphs: Diameter and mixing time , 2007, math/0701316.

[15]  Øystein J. Rødseth Weighted multi-connected loop networks , 1996, Discret. Math..

[16]  A. Zaharescu,et al.  The Statistics of the Trajectory of a Certain Billiard in a Flat Two-Torus , 2001, math/0110217.

[17]  L. J. Boya,et al.  On Regular Polytopes , 2012, 1210.0601.

[18]  Stan Wagon,et al.  Faster Algorithms for Frobenius Numbers , 2005, Electron. J. Comb..

[19]  Sergeĭ Sergeevich Ryshkov,et al.  C-types of n-dimensional lattices and 5-dimensional primitive parallelohedra : with application to the theory of coverings , 1978 .

[20]  Yuval Peres,et al.  Diameters in Supercritical Random Graphs Via First Passage Percolation , 2009, Combinatorics, Probability and Computing.

[21]  V. Ramachandran,et al.  The diameter of sparse random graphs , 2007 .

[22]  O. Kallenberg Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.

[23]  Han Li,et al.  Effective limit distribution of the Frobenius numbers , 2011, Compositio Mathematica.

[24]  A. Brauer,et al.  On a problem of Frobenius. , 1962 .

[25]  J. Marklof The asymptotic distribution of Frobenius numbers , 2009, 0902.3557.

[26]  Bernard Mans,et al.  On Routing in Circulant Graphs , 1999, COCOON.

[27]  Алексей Владимирович Устинов,et al.  О распределении чисел Фробениуса с тремя аргументами@@@On the distribution of Frobenius numbers with three arguments , 2010 .

[28]  P. Gritzmann Lattice covering of space with symmetric convex bodies , 1985 .

[29]  F. Thorne,et al.  Geometry of Numbers , 2017, Algebraic Number Theory.

[30]  Svante Janson Random cutting and records in deterministic and random trees , 2006 .

[31]  Jens Marklof,et al.  Kinetic transport in the two-dimensional periodic Lorentz gas , 2008 .

[32]  Nicholas C. Wormald,et al.  The Diameter of Sparse Random Graphs , 2010, Comb. Probab. Comput..

[33]  A. Zaharescu,et al.  Distribution of Lattice Points Visible from the Origin , 2000 .

[34]  A. Ingham The distribution of prime numbers , 1972 .

[35]  Tomaz Pisanski,et al.  Computing the Diameter in Multiple-Loop Networks , 1993, J. Algorithms.

[36]  Béla Bollobás,et al.  The Diameter of Random Graphs , 1981 .

[37]  Béla Bollobás,et al.  The Diameter of a Cycle Plus a Random Matching , 1988, SIAM J. Discret. Math..

[38]  Ravi Kannan,et al.  Lattice translates of a polytope and the Frobenius problem , 1992, Comb..

[39]  C. A. Rogers Lattice coverings of space , 1959 .

[40]  Béla Bollobás,et al.  The Diameter of a Scale-Free Random Graph , 2004, Comb..