Diameters of random circulant graphs
暂无分享,去创建一个
[1] Fan Chung Graham,et al. The Diameter of Sparse Random Graphs , 2001, Adv. Appl. Math..
[2] Béla Bollobás,et al. The diameter of random regular graphs , 1982, Comb..
[3] Iskander Aliev,et al. An optimal lower bound for the Frobenius problem , 2005 .
[4] Albert Nijenhuis. A Minimal-Path Algorithm for the “Money Changing Problem” , 1979 .
[5] Linyuan Lu,et al. The diameter of random massive graphs , 2001, SODA '01.
[6] Gideon Amir,et al. The diameter of a random Cayley graph of ℤ q , 2010, Groups Complex. Cryptol..
[7] Randall Dougherty,et al. The Degree-Diameter Problem for Several Varieties of Cayley Graphs I: The Abelian Case , 2004, SIAM J. Discret. Math..
[8] Sueli I. R. Costa,et al. Circulant graphs and tessellations on flat tori , 2010 .
[9] Akshay Venkatesh,et al. Small solutions to linear congruences and Hecke equidistribution , 2005 .
[10] J. Marklof,et al. The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems , 2007, 0706.4395.
[11] Feng Xue,et al. On the connectivity and diameter of small-world networks , 2007, Advances in Applied Probability.
[12] Mathieu Dutour Sikiric,et al. A generalization of Voronoi's reduction theory and its application , 2006 .
[13] Andreas Strömbergsson. On the limit distribution of Frobenius numbers , 2011 .
[14] Y. Peres,et al. Critical random graphs: Diameter and mixing time , 2007, math/0701316.
[15] Øystein J. Rødseth. Weighted multi-connected loop networks , 1996, Discret. Math..
[16] A. Zaharescu,et al. The Statistics of the Trajectory of a Certain Billiard in a Flat Two-Torus , 2001, math/0110217.
[17] L. J. Boya,et al. On Regular Polytopes , 2012, 1210.0601.
[18] Stan Wagon,et al. Faster Algorithms for Frobenius Numbers , 2005, Electron. J. Comb..
[19] Sergeĭ Sergeevich Ryshkov,et al. C-types of n-dimensional lattices and 5-dimensional primitive parallelohedra : with application to the theory of coverings , 1978 .
[20] Yuval Peres,et al. Diameters in Supercritical Random Graphs Via First Passage Percolation , 2009, Combinatorics, Probability and Computing.
[21] V. Ramachandran,et al. The diameter of sparse random graphs , 2007 .
[22] O. Kallenberg. Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.
[23] Han Li,et al. Effective limit distribution of the Frobenius numbers , 2011, Compositio Mathematica.
[24] A. Brauer,et al. On a problem of Frobenius. , 1962 .
[25] J. Marklof. The asymptotic distribution of Frobenius numbers , 2009, 0902.3557.
[26] Bernard Mans,et al. On Routing in Circulant Graphs , 1999, COCOON.
[27] Алексей Владимирович Устинов,et al. О распределении чисел Фробениуса с тремя аргументами@@@On the distribution of Frobenius numbers with three arguments , 2010 .
[28] P. Gritzmann. Lattice covering of space with symmetric convex bodies , 1985 .
[29] F. Thorne,et al. Geometry of Numbers , 2017, Algebraic Number Theory.
[30] Svante Janson. Random cutting and records in deterministic and random trees , 2006 .
[31] Jens Marklof,et al. Kinetic transport in the two-dimensional periodic Lorentz gas , 2008 .
[32] Nicholas C. Wormald,et al. The Diameter of Sparse Random Graphs , 2010, Comb. Probab. Comput..
[33] A. Zaharescu,et al. Distribution of Lattice Points Visible from the Origin , 2000 .
[34] A. Ingham. The distribution of prime numbers , 1972 .
[35] Tomaz Pisanski,et al. Computing the Diameter in Multiple-Loop Networks , 1993, J. Algorithms.
[36] Béla Bollobás,et al. The Diameter of Random Graphs , 1981 .
[37] Béla Bollobás,et al. The Diameter of a Cycle Plus a Random Matching , 1988, SIAM J. Discret. Math..
[38] Ravi Kannan,et al. Lattice translates of a polytope and the Frobenius problem , 1992, Comb..
[39] C. A. Rogers. Lattice coverings of space , 1959 .
[40] Béla Bollobás,et al. The Diameter of a Scale-Free Random Graph , 2004, Comb..