Optical waveguides in lithium niobate: Recent developments and applications

The state of the art of optical waveguide fabrication in lithium niobate is reviewed, with particular emphasis on new technologies and recent applications. The attention is mainly devoted to recently developed fabrication methods, such as femtosecond laser writing, ion implantation, and smart cut waveguides as well as to the realization of waveguides with tailored functionalities, such as photorefractive or domain engineered structures. More exotic systems, such as reconfigurable and photorefractive soliton waveguides, are also considered. Classical techniques, such as Ti in-diffusion and proton exchange, are cited and briefly reviewed as a reference standpoint to highlight the recent developments. In all cases, the application-oriented point of view is preferred, in order to provide the reader with an up-to date panorama of the vast possibilities offered by lithium niobate to integrated photonics.

[1]  G. G. Bentini,et al.  Integrated Mach-Zehnder micro-interferometer on LiNbO3 , 2007 .

[2]  Andreas Tünnermann,et al.  Origins of waveguiding in femtosecond laser-structured LiNbO3 , 2007 .

[3]  Vyacheslav A. Fedorov,et al.  Structural phase diagram of H x /Li 1-x NbO 3 waveguides: The correlation between optical and structural properties , 1996 .

[4]  张德龙,et al.  Near-stoichiometric Ti:LiNbO3 strip waveguide with varied substrate refractive index in waveguide layer , 2010 .

[5]  Li Gui,et al.  Towards nonlinear photonic wires in lithium niobate , 2010, OPTO.

[6]  Wolfgang Sohler,et al.  Single-frequency Ti:Er:LiNbO3 distributed Bragg reflector waveguide laser with thermally fixed photorefractive cavity , 2001 .

[7]  V. Bermudez,et al.  Fabrication of Periodically Poled Swift Ion-irradiation Waveguides in LiNbO3 , 2009 .

[8]  Tzyy-Jiann Wang,et al.  Integrated-optic wavelength demultiplexer on lithium niobate by double proton exchange , 2007 .

[9]  Liu Jin-song,et al.  Screening-photovoltaic spatial solitons in biased photovoltaic–photorefractive crystals and their self-deflection , 1999 .

[10]  V. Fedorov,et al.  Subsurface disorder and electro-optical properties of proton-exchanged LiNbO 3 waveguides produced by different techniques , 2014 .

[11]  Yoshinori Hibino,et al.  Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit. , 2005, Optics letters.

[12]  W. Sohler,et al.  Lithium Niobate Ridge Waveguides Fabricated by Wet Etching , 2007, IEEE Photonics Technology Letters.

[13]  Mathieu Chauvet,et al.  Pyroliton: pyroelectric spatial soliton. , 2009, Optics express.

[14]  E.L. Wooten,et al.  A review of lithium niobate modulators for fiber-optic communications systems , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[15]  M. Fejer,et al.  Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides. , 2005, Optics letters.

[16]  I. E. Kalabin,et al.  Precipitation of HNbO3 at the Ti:LiNbO3 surface , 2004 .

[17]  Wolfgang Sohler,et al.  Two-dimensional Measurement Of Intensity Distributions Of Optical Modes Of Ti:LiNbO3 Channel Waveguides And Comparison With Numerically Calculated Results , 1986, Other Conferences.

[18]  Ovidio Peña-Rodríguez,et al.  Optical Waveguides Fabricated by Ion Implantation/Irradiation: A Review Optical Waveguides Fabricated by Ion Implantation/Irradiation: A Review , 2012 .

[19]  M. Segev,et al.  Observation of parity–time symmetry in optics , 2010 .

[20]  M. Carrascosa,et al.  Analysis of photorefractive optical damage in lithium niobate: application to planar waveguides. , 2010, Optics express.

[21]  Roberta Ramponi,et al.  Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient , 2007 .

[22]  W. Ramadan,et al.  Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides , 2004 .

[23]  Detlef Kip,et al.  Photorefractive waveguides in oxide crystals: fabrication, properties, and applications , 1998 .

[24]  E. Fazio,et al.  Frequency-doubling in self-induced waveguides in lithium niobate , 2007 .

[25]  Soft-Proton-Exchange Tapers for Low Insertion-Loss $ \hbox{LiNbO}_{3}$ Devices , 2007, Journal of Lightwave Technology.

[26]  Fei Lu,et al.  Theoretical modeling of refractive index in ion implanted LiNbO3 waveguides , 2010 .

[27]  P G Suchoski,et al.  Low-loss high-extinction polarizers fabricated in LiNbO3 by proton exchange. , 1988, Optics letters.

[28]  Model of the erbium ion exchange process in lithium niobate crystals , 2004 .

[29]  M. N. Armenise,et al.  Ti Compound Formation During Ti Diffusion in LiNbO 3 , 1982 .

[30]  Li Gui,et al.  Lithium niobate-on-insulator (LNOI): status and perspectives , 2012, Photonics Europe.

[31]  Raimund Ricken,et al.  Distributed feedback-distributed Bragg reflector coupled cavity laser with a Ti:(Fe:)Er:LiNbO3 waveguide. , 2004, Optics letters.

[32]  Paolo Mazzoldi,et al.  Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions , 2004 .

[33]  S. Fouchet,et al.  Wavelength dispersion of Ti induced refractive index change in LiNbO 3 as a function of diffusion parameters , 1987 .

[35]  W. Wong,et al.  Near-stoichiometric LiNbO3 optical waveguides fabricated using vapor transport equilibration and Ti co-diffusion , 2004 .

[36]  Osamu Matoba,et al.  Fabrication of a two-dimensional array of photorefractive waveguides in LiNbO3:Fe using non-diffracting checkered pattern , 1998 .

[37]  Richard E. Muller,et al.  SELF-TRAPPING OF AN OPTICAL VORTEX BY USE OF THE BULK PHOTOVOLTAIC EFFECT , 1997 .

[38]  M C Bashaw,et al.  Y junctions arising from dark-soliton propagation in photovoltaic media. , 1996, Optics letters.

[39]  A. Krasheninnikov,et al.  Electronic stopping power from first-principles calculations with account for core electron excitations and projectile ionization , 2014 .

[40]  J. Rams,et al.  High-index proton-exchanged waveguides in Z-cut LiNbO3 with undegraded nonlinear optical coefficients , 1997 .

[41]  G. Griffiths,et al.  Analysis of titanium diffused planar optical waveguides in lithium niobate , 1984, IEEE Journal of Quantum Electronics.

[42]  K. Itoh,et al.  Dynamic Interconnections Using Photorefractive Crystals , 2000 .

[43]  S. Connell,et al.  Effects of Ag+ and Au3+ ion implantation of lithium niobate , 2006 .

[44]  D Psaltis,et al.  Holographic interconnections in photorefractive waveguides. , 1991, Applied optics.

[45]  G. G. Bentini,et al.  Step-index optical waveguide produced by multi-step ion implantation in LiNbO3. , 2012, Optics express.

[46]  B. Luther-Davies,et al.  Wave mixing and beam profile control in a photorefractive waveguide. , 1995 .

[47]  P. Moretti,et al.  Luminescence of Nd3+ in proton or helium-implanted channel waveguides in Nd :YAG crystals , 2003 .

[48]  R. Scholz,et al.  Investigation of latent tracks from heavy ions in GeS crystals by high resolution TEM , 1994 .

[49]  I. Kaminow,et al.  Metal‐diffused optical waveguides in LiNbO3 , 1974 .

[50]  M Paturzo,et al.  Amplitude and phase reconstruction of photorefractive spatial bright-soliton in LiNbO3 during its dynamic formation by digital holography. , 2007, Optics express.

[51]  P. Günter,et al.  Optical microring resonators in fluorineimplanted lithium niobate. , 2008, Optics express.

[52]  Carsten Langrock,et al.  All-optical Ti:PPLN wavelength conversion modules for free-space optical transmission links in the mid-infrared. , 2009, Optics letters.

[54]  Richard M. Osgood,et al.  Fabrication of single-crystal lithium niobate films by crystal ion slicing , 1998 .

[55]  A. Tünnermann,et al.  Evanescent coupling in arrays of type II femtosecond laser-written waveguides in bulk x-cut lithium niobate , 2008 .

[56]  S. Sato,et al.  Wavelength dependence of photorefractive effect in Ti‐indiffused LiNbO3 waveguides , 1989 .

[57]  M. Chauvet,et al.  Sharp waveguide bends induced by spatial solitons , 2006 .

[58]  Fernando Agulló-Rueda,et al.  Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics , 2007 .

[59]  A. Mitchell,et al.  Investigations of the physical origins of etching LiNbO3 during Ti in-diffusion , 2010 .

[60]  W. Burns,et al.  Mode dispersion in diffused channel waveguides by the effective index method. , 1977, Applied optics.

[61]  Paolo Mazzoldi,et al.  Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization , 2002 .

[62]  S. H. Wemple,et al.  Oxygen‐Octahedra Ferroelectrics. I. Theory of Electro‐optical and Nonlinear optical Effects , 1969 .

[63]  Yan Zhou,et al.  Optical amplification by two-wave mixing in lithium niobate waveguides , 1999, Optics + Photonics.

[64]  H. Maillotte,et al.  Formation of reconfigurable singlemode channel waveguides in LiNbO/sub 3/ using spatial solitons , 2003 .

[65]  Yaron Silberberg,et al.  Discretizing light behaviour in linear and nonlinear waveguide lattices , 2003, Nature.

[66]  Feng Chen,et al.  Oxygen ion-implanted optical channel waveguides in Nd : MgO : LiNbO3: fabrication, characterization and simulation , 2007 .

[67]  A. Tünnermann,et al.  Patterning of LiNbO3 by means of ion irradiation using the electronic energy deposition and wet etching , 2009 .

[68]  Mode-selective coupler for wavelength multiplexing using LiNbO3:Ti optical waveguides , 2008 .

[69]  C. Depeursinge,et al.  Femtosecond irradiation induced refractive-index changes and channel waveguiding in bulk Ti/sup 3+/:sapphire , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[70]  D. J. Fang,et al.  Tropospheric amplitude scintillations at c-band along satellite up-link , 1984 .

[71]  Tow Chong Chong,et al.  Microstructure in lithium niobate by use of focused femtosecond laser pulses , 2004 .

[72]  K. Sugii,et al.  A study on titanium diffusion into LiNbO3 waveguides by electron probe analysis and X-ray diffraction methods , 1978 .

[73]  Ian H. White,et al.  A simple device to allow enhanced bandwidths at 850 nm in multimode fibre links for gigabit LANs , 1999 .

[74]  Raman frequency shift induced by photorefractive effect on Fe-doped lithium niobate , 2013 .

[75]  F. Agullo-lopez,et al.  Optical determination of three-dimensional nanotrack profiles generated by single swift-heavy ion impacts in lithium niobate , 2006 .

[76]  T. Metzger,et al.  High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3 , 1998 .

[77]  Shuanggen Zhang,et al.  Fabrication and characterization of periodically poled lithium niobate waveguide using femtosecond laser pulses , 2008 .

[78]  C. T. Mueller,et al.  Time-Dependent Photorefractive Effects In Linbo3 Directional Couplers , 1985, Other Conferences.

[79]  T. Chong,et al.  Formation and Properties of Proton-exchanged Z-cut MgO:LiNbO3 Crystal Waveguides , 1997 .

[80]  C De Angelis,et al.  Observation of quadratic spatial solitons in periodically poled lithium niobate. , 1999, Optics letters.

[81]  A. Bettiol,et al.  Suspended slab and photonic crystal waveguides in lithium niobate , 2010 .

[82]  M. Stepić,et al.  Observation of staggered surface solitary waves in one-dimensional waveguide arrays. , 2006, Optics letters.

[83]  Feng Chen,et al.  Formation of reconfigurable optical channel waveguides and beam splitters on top of proton-implanted lithium niobate crystals using spatial dark soliton-like structures , 2008 .

[84]  M. Segev,et al.  Experimental observation of Rabi oscillations in photonic lattices. , 2009, Physical review letters.

[85]  Andreas Tünnermann,et al.  Waveguides in lithium niobate fabricated by focused ultrashort laser pulses , 2007 .

[86]  Tao Liu,et al.  Effects of swift argon-ion irradiation on the proton-exchanged LiNbO 3 crystal , 2012 .

[87]  Zhou Jianbo,et al.  Light-Induced Array of Three-Dimensional Waveguides in Lithium Niobate by Employing Two-Beam Interference Field , 2004 .

[88]  M. C. Bashaw,et al.  Observation of dark photovoltaic spatial solitons. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[89]  Meftah,et al.  Track formation in SiO2 quartz and the thermal-spike mechanism. , 1994, Physical review. B, Condensed matter.

[90]  P. Townsend,et al.  Laser processing of insulator surfaces , 1997 .

[91]  V. Quiring,et al.  In‐band pumped Ti:Tm:LiNbO3 waveguide amplifier and low threshold laser , 2013 .

[92]  Gap solitons in defocusing lithium niobate binary waveguide arrays fabricated by proton implantation and selective light illumination , 2009 .

[93]  F. Agullo-lopez,et al.  Lattice preamorphization by ion irradiation: Fluence dependence of the electronic stopping power threshold for amorphization , 2005 .

[94]  Stefan Nolte,et al.  Femtosecond writing of high-quality waveguides inside phosphate glasses and crystalline media using a bifocal approach , 2004, SPIE LASE.

[95]  P. J. Chandler,et al.  Optical Effects of Ion Implantation , 1994 .

[96]  Feng Chen,et al.  Development of ion-implanted optical waveguides in optical materials: A review , 2007 .

[97]  A. Zaltron,et al.  Iron doping of lithium niobate by thermal diffusion from thin film: study of the treatment effect , 2011 .

[98]  M. De Micheli,et al.  Highly Confining Proton Exchanged Waveguides on Z-Cut LiNbO3 With Preserved Nonlinear Coefficient , 2014, IEEE Photonics Technology Letters.

[99]  F. Studer,et al.  Experimental determination of track cross-section in Gd3Ga5O12 and comparison to the inelastic thermal spike model applied to several materials , 2005 .

[100]  G. Lenz,et al.  Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO3 waveguides , 2000, IEEE Photonics Technology Letters.

[101]  P. Xu,et al.  On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits. , 2014, Physical review letters.

[102]  P. J. Chandler,et al.  Planar and channel waveguide fabrication in LiB3O5 using MeV He+ ion implantation , 1996 .

[103]  P. Günter,et al.  Blue‐light second‐harmonic generation in ion‐implanted KNbO3 channel waveguides of new design , 1996 .

[104]  F. Baida,et al.  Enhanced Electro-optical Lithium Niobate Photonic Crystal Wire Waveguide on a Smart-cut Thin Film References and Links , 2022 .

[105]  M Segev,et al.  Waveguides formed by quasi-steady-state photorefractive spatial solitons. , 1995, Optics letters.

[106]  Andreas Tünnermann,et al.  Structural properties of femtosecond laser-induced modifications in LiNbO3 , 2006 .

[107]  D. Z. Anderson,et al.  Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[108]  M. DiDomenico,et al.  Theory of the elasto-optic effect in nonmetallic crystals , 1970 .

[109]  S. Longhi Quantum‐optical analogies using photonic structures , 2009 .

[110]  A. Tünnermann,et al.  Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity , 2013 .

[111]  J. Loubet,et al.  Surface modifications of LiNbO3 single crystals induced by swift heavy ions , 1996 .

[112]  C. E. Rice,et al.  A new rutile structure solid-solution phase in the LiNb3O8-TiO2 system, and its role in Ti diffusion into LiNbO3 , 1986 .

[113]  Fei Liu,et al.  Nonlinear refraction of lithium niobate crystal doped with different metal nanoparticles , 2014 .

[114]  Szenes General features of latent track formation in magnetic insulators irradiated with swift heavy ions. , 1995, Physical review. B, Condensed matter.

[115]  S. Nolte,et al.  Hexagonal waveguide arrays written with fs-laser pulses , 2006 .

[116]  C. White,et al.  Ion Implantation of Optical Materials , 1994 .

[117]  Feng Chen,et al.  Photorefractive properties of optical waveguides in Fe:LiNbO3 crystals produced by O3+ ion implantation , 2009 .

[118]  A. Stoneham,et al.  Making tracks: electronic excitation roles in forming swift heavy ion tracks , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[119]  Feng Chen,et al.  Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation , 2001 .

[120]  R. J. Holmes,et al.  Titanium diffusion into LiNbO3 as a function of stoichiometry , 1984 .

[121]  Y Ichioka,et al.  Array of photorefractive waveguides for massively parallel optical interconnections in lithium niobate. , 1996, Optics letters.

[122]  Feng Chen,et al.  Reconfigurable optical channel waveguides in lithium niobate crystals produced by combination of low-dose O3+ ion implantation and selective white light illumination. , 2008, Optics express.

[123]  Y. Fujii,et al.  Quantitatively measured photorefractive sensitivity of proton-exchanged lithium niobate, proton-exchanged magnesium oxide-doped lithium niobate, and ion-exchanged potassium titanyl phosphate waveguides. , 1994, Applied optics.

[124]  C Denz,et al.  Electro-optical tunable waveguide Bragg gratings in lithium niobate induced by femtosecond laser writing. , 2012, Optics express.

[125]  A. Agranat,et al.  Thermal stability of a slab waveguide implemented by α particles implantation in potassium lithium tantalate niobate , 2005 .

[126]  William K. Burns,et al.  Ti diffusion in Ti : LiNbO3 planar and channel optical waveguides , 1979 .

[127]  M. Lobino,et al.  Anisotropic model for the fabrication of annealed and reverse proton exchanged waveguides in congruent lithium niobate. , 2014, Optics express.

[128]  N. Gisin,et al.  PPLN waveguide for quantum communication , 2001, quant-ph/0107125.

[129]  Xinzheng Zhang,et al.  Enhanced second-harmonic generation by means of high-power confinement in a photovoltaic soliton-induced waveguide. , 2004, Optics letters.

[130]  P. Günter,et al.  Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding , 2004 .

[131]  S. Nolte,et al.  Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics , 2003 .

[132]  Vyacheslav A. Fedorov,et al.  Ion Exchange in Single Crystals for Integrated Optics and Optoelectronics , 1999 .

[133]  H. Suche,et al.  Diode-pumped and packaged acoustooptically tunable Ti:Er:LiNbO/sub 3/ waveguide laser of wide tuning range , 1997 .

[134]  Alastair M. Glass,et al.  Optically induced crosstalk in LiNbO3 waveguide switches , 1980 .

[135]  Richard M. Osgood,et al.  Strong nonlinear optical response in epitaxial liftoff single-crystal LiNbO3 films , 1999 .

[136]  Feng Chen,et al.  Swift heavy-ion irradiated active waveguides in Nd:YAG crystals: fabrication and laser generation. , 2010, Optics letters.

[137]  Mach-Zehnder modulators with lithium niobate ridge waveguides fabricated by proton-exchange wet etch and nickel indiffusion , 1995 .

[138]  Jian Sun,et al.  Green-induced infrared absorption in annealed proton-exchanged MgO:LiNbO_3 waveguides , 2014 .

[139]  Structural and optical characterization for vapor-phase proton exchanged lithium niobate waveguides , 2003 .

[140]  A. Glass,et al.  Optical damage resistance of monovalent ion diffused LiNbO3 and LiTaO3 waveguides , 1981 .

[141]  Feng Chen,et al.  Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation , 2007 .

[142]  F. Agullo-lopez,et al.  Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation , 2005 .

[143]  Qiang Wu,et al.  Nonlinear spectrum broadening of femtosecond laser pulses in photorefractive waveguide arrays. , 2010, Optics express.

[144]  M. C. Bashaw,et al.  Dark and bright photovoltaic spatial solitons. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[145]  Masaki Saitoh,et al.  PHOTOREFRACTIVE DAMAGE IN LINBO3 THIN-FILM OPTICAL WAVEGUIDES GROWN BY LIQUID PHASE EPITAXY , 1994 .

[146]  Jianlin Zhao,et al.  One-dimensional spatial dark soliton-induced channel waveguides in lithium niobate crystal. , 2006, Applied optics.

[147]  Huiying Hu,et al.  Plasma etching of proton-exchanged lithium niobate , 2006 .

[148]  R. Narayan Electrooptic coefficient variation in proton exchanged and annealed lithium niobate samples , 1997 .

[149]  Christine Silberhorn,et al.  An efficient integrated two-color source for heralded single photons , 2012, 1211.3960.

[150]  M. Segev,et al.  Optically induced photovoltaic self-defocusing-to-self-focusing transition. , 1998, Optics letters.

[151]  Y Ichioka,et al.  Fabrication experiment of photorefractive three-dimensional waveguides in lithium niobate. , 1994, Optics letters.

[152]  Avigdor Brillant,et al.  Digital and Analog Fiber Optic Communications for CATV and FTTx Applications , 2008 .

[153]  R. Syms Advances in channel waveguide lithium niobate integrated optics , 1988 .

[154]  R. A. Becker Methods Of Characterizing Photorefractive Susceptibility Of LiNbO3 Waveguides , 1985, Other Conferences.

[155]  M. Carrascosa,et al.  Novel optical waveguides by in-depth controlled electronic damage with swift ions , 2007 .

[156]  F. Bussières,et al.  Broadband waveguide quantum memory for entangled photons , 2010, Nature.

[157]  F. Agullo-lopez,et al.  Recrystallization of amorphous nanotracks and uniform layers generated by swift-ion-beam irradiation in lithium niobate , 2011 .

[158]  Sylvain Ballandras,et al.  Integrated optofluidic index sensor based on self-trapped beams in LiNbO3 , 2012 .

[159]  Fernando Agulló-Rueda,et al.  Generation of amorphous surface layers in LiNbO3 by ion-beam irradiation: thresholding and boundary propagation , 2005 .

[160]  F. Devaux,et al.  Light-induced waveguide by a finite self-trapped vortex beam in a photorefractive medium , 2011 .

[161]  M. Bazzan,et al.  Luminescence-induced photorefractive spatial solitons , 2010 .

[162]  G. L. Yip,et al.  Theoretical modeling and characterization of annealed proton-exchanged planar waveguides in z-cut LiNbO/sub 3/ , 1991 .

[163]  Nan Ei Yu,et al.  Second-harmonic generation in periodically poled lithium niobate waveguides fabricated by femtosecond laser pulses , 2006 .

[164]  Hiroshi Iwasaki,et al.  Optical properties in titanium‐diffused LiNbO3 strip waveguides , 1978 .

[165]  Kazuyoshi ITOH,et al.  Analysis of Photo-Induced Waveguide in Lithium Niobate Crystal , 1994 .

[166]  J. Veselka,et al.  Proton exchange for high‐index waveguides in LiNbO3 , 1982 .

[167]  E. Krätzig,et al.  Anisotropic four-wave mixing in planar LiNbO(3) optical waveguides. , 1992, Optics letters.

[168]  H. Åhlfeldt,et al.  Structural and optical properties of annealed proton‐exchanged waveguides in z‐cut LiTaO3 , 1995 .

[169]  P. Townsend Ion implantation and integrated optics , 1977 .

[170]  B. Canut,et al.  The concept of effective electronic stopping power for modelling the damage cross-section in refractory oxides irradiated by GeV ions or MeV clusters , 1998 .

[171]  A. Zheng,et al.  Directly writing embedded waveguides in lithium niobate by a femtosecond laser , 2013 .

[172]  P. Günter,et al.  Photorefractive two-wave mixing with focused Gaussian beams , 1995 .

[173]  M. Bazzan,et al.  Depth-resolved photorefractive characterization of lithium niobate doped with iron by thermal diffusion , 2012 .

[174]  E. Zolotoyabko,et al.  Diffusion and structural modification of Ti:LiNbO3, studied by high-resolution x-ray diffraction , 1999 .

[175]  M. Segev,et al.  Discrete diffraction and spatial gap solitons in photovoltaic LiNbO3 waveguide arrays. , 2005, Optics express.

[176]  A.E. Willner,et al.  All-optical signal processing using /spl chi//sup (2)/ nonlinearities in guided-wave devices , 2006, Journal of Lightwave Technology.

[177]  S. K. Korotky,et al.  Mode Size and Method for Estimating the Propagation Constant of Single-Mode Ti: LiNbO/sub 3/ Strip Waveguides , 1982 .

[178]  Peng Liu,et al.  Refractive index change in ion-implanted LiNbO3 waveguides calculated from lattice damage ratio , 2010 .

[179]  P. Townsend,et al.  Ion beam luminescence of Nd:YAG , 2005 .

[180]  Emanuele Rimini,et al.  Ion implantation : basics to device fabrication , 1995 .

[181]  Jian Sun,et al.  466 mW green light generation using annealed proton-exchanged periodically poled MgO: LiNbO3 ridge waveguides. , 2012, Optics letters.

[182]  Sasan Fathpour,et al.  Heterogeneous lithium niobate photonics on silicon substrates. , 2013, Optics express.

[183]  A. Polman,et al.  Rapid thermal annealing of MeV erbium implanted LiNbO3 single crystals for optical doping , 1994 .

[184]  Masaki Asobe,et al.  High-power, tunable difference frequency generation source for absorption spectroscopy based on a ridge waveguide periodically poled lithium niobate crystal. , 2007, Optics express.

[185]  D. Buchter,et al.  Lithium niobate photonic wires , 2009, 2010 IEEE Photinic Society's 23rd Annual Meeting.

[186]  M. Minakata,et al.  Precise determination of refractive‐index changes in Ti‐diffused LiNbO3 optical waveguides , 1978 .

[187]  J. L. Jackel,et al.  Suppression of Outdiffusion in Titanium Diffused LiNbO3: A Review , 1982 .

[188]  C. Sada,et al.  Correlation between optical and compositional properties of Ti:LiNbO3 channel optical waveguides , 2000 .

[189]  Yan-qing Lu,et al.  Tailoring entanglement through domain engineering in a lithium niobate waveguide , 2014, Scientific Reports.

[190]  Stress in LiNbO3 proton-exchanged waveguide layers , 2010 .

[191]  Joseph T. Boyd,et al.  Raman microprobe characterization of photorefractive nonlinearity in Ti:LiNbO3 channel waveguides , 1991 .

[192]  P. D. Townsend,et al.  Optical effects of ion implantation , 1987 .

[193]  Gar Lam Yip,et al.  Accurate modeling of the index profile in annealed proton-exchanged LiNbO3 waveguides , 1991, Other Conferences.