An FFT framework for simulating non-local ductile failure in heterogeneous materials

[1]  G. Bonnet,et al.  FFT based numerical homogenization method for porous conductive materials , 2020, Computer Methods in Applied Mechanics and Engineering.

[2]  Felix Ernesti,et al.  Fast implicit solvers for phase-field fracture problems on heterogeneous microstructures , 2020 .

[3]  WaiChing Sun,et al.  FFT-based solver for higher-order and multi-phase-field fracture models applied to strongly anisotropic brittle materials , 2020, Computer Methods in Applied Mechanics and Engineering.

[4]  T. Pardoen,et al.  A nonlocal approach of ductile failure incorporating void growth, internal necking, and shear dominated coalescence mechanisms , 2020 .

[5]  Jörn Mosler,et al.  A micromorphic approach for gradient-enhanced anisotropic ductile damage , 2020 .

[6]  R. Lebensohn,et al.  A fast Fourier transform-based mesoscale field dislocation mechanics study of grain size effects and reversible plasticity in polycrystals , 2020, Journal of the Mechanics and Physics of Solids.

[7]  M. Kuna,et al.  On the identification and uniqueness of constitutive parameters for a non-local GTN-model , 2020 .

[8]  Hervé Moulinec,et al.  A numerical method for computing the overall response of nonlinear composites with complex microstructure , 1998, ArXiv.

[9]  J. Reddy,et al.  Fracture of viscoelastic materials: FEM implementation of a non-local & rate form-based finite-deformation constitutive theory , 2019, Computer Methods in Applied Mechanics and Engineering.

[10]  Javier Segurado,et al.  DBFFT: A displacement based FFT approach for non-linear homogenization of the mechanical behavior , 2019, International Journal of Engineering Science.

[11]  L. H. Poh,et al.  Localizing gradient‐enhanced Rousselier model for ductile fracture , 2019, International Journal for Numerical Methods in Engineering.

[12]  J. Segurado,et al.  An algorithm for stress and mixed control in Galerkin‐based FFT homogenization , 2019, International Journal for Numerical Methods in Engineering.

[13]  M. Diehl,et al.  Spectral Solvers for Crystal Plasticity and Multi-physics Simulations , 2019 .

[14]  E. Maire,et al.  Compression behavior of lattice structures produced by selective laser melting: X-ray tomography based experimental and finite element approaches , 2018, Acta Materialia.

[15]  E. Maire,et al.  Two-Scale Tomography Based Finite Element Modeling of Plasticity and Damage in Aluminum Foams , 2018, Materials.

[16]  Jian-Ying Wu,et al.  A geometrically regularized gradient-damage model with energetic equivalence , 2018 .

[17]  P. Bouchard,et al.  Ductile fracture of a metal matrix composite studied using 3D numerical modeling of void nucleation and coalescence , 2017 .

[18]  M. Diehl,et al.  Coupled Crystal Plasticity–Phase Field Fracture Simulation Study on Damage Evolution Around a Void: Pore Shape Versus Crystallographic Orientation , 2017 .

[19]  C. Steinke,et al.  On the relation between phase-field crack approximation and gradient damage modelling , 2017 .

[20]  M. Geers,et al.  Finite strain FFT-based non-linear solvers made simple , 2016, 1603.08893.

[21]  Cv Clemens Verhoosel,et al.  Gradient damage vs phase-field approaches for fracture: Similarities and differences , 2016 .

[22]  M. Geers,et al.  A finite element perspective on nonlinear FFT‐based micromechanical simulations , 2016, 1601.05970.

[23]  A. Hartmaier,et al.  Formulation of nonlocal damage models based on spectral methods for application to complex microstructures , 2015 .

[24]  Laura De Lorenzis,et al.  A review on phase-field models of brittle fracture and a new fast hybrid formulation , 2015 .

[25]  F. Willot,et al.  Fourier-based schemes for computing the mechanical response of composites with accurate local fields , 2014, 1412.8398.

[26]  M. Schneider,et al.  Efficient fixed point and Newton–Krylov solvers for FFT-based homogenization of elasticity at large deformations , 2014 .

[27]  M. Kuna,et al.  Size effects in ductile failure of porous materials containing two populations of voids , 2014 .

[28]  Jaroslav Vondrejc,et al.  An FFT-based Galerkin method for homogenization of periodic media , 2013, Comput. Math. Appl..

[29]  Radhi Abdelmoula,et al.  A damage model for crack prediction in brittle and quasi-brittle materials solved by the FFT method , 2012, International Journal of Fracture.

[30]  V. G. Kouznetsova,et al.  Multi-scale computational homogenization: Trends and challenges , 2010, J. Comput. Appl. Math..

[31]  Jacques Besson,et al.  Continuum Models of Ductile Fracture: A Review , 2010 .

[32]  B. Svendsen,et al.  Nonlocal Modeling and Simulation of Ductile Damage and Failure in Metal Matrix Composites , 2008 .

[33]  H. Böhm,et al.  Numerical simulations of void linkage in model materials using a nonlocal ductile damage approximation , 2007 .

[34]  T. Drabek,et al.  Micromechanical finite element analysis of metal matrix composites using nonlocal ductile failure models , 2006 .

[35]  T. Drabek,et al.  Damage models for studying ductile matrix failure in composites , 2005 .

[36]  Javier Segurado,et al.  Three-dimensional multiparticle cell simulations of deformation and damage in sphere-reinforced composites , 2004 .

[37]  Helmut J. Böhm,et al.  A Short Introduction to Continuum Micromechanics , 2004 .

[38]  Milan Jirásek,et al.  Comparison of integral-type nonlocal plasticity models for strain-softening materials , 2003 .

[39]  Milan Jirásek,et al.  Nonlocal integral formulations of plasticity and damage : Survey of progress , 2002 .

[40]  Hervé Moulinec,et al.  A computational scheme for linear and non‐linear composites with arbitrary phase contrast , 2001 .

[41]  Rhj Ron Peerlings,et al.  Gradient enhanced damage for quasi-brittle materials , 1996 .

[42]  J. Devaux,et al.  Bifurcation Effects in Ductile Metals With Nonlocal Damage , 1994 .

[43]  H. Moulinec,et al.  A fast numerical method for computing the linear and nonlinear mechanical properties of composites , 1994 .

[44]  Z. Bažant,et al.  Nonlocal Continuum Damage, Localization Instability and Convergence , 1988 .

[45]  G. Rousselier,et al.  Ductile fracture models and their potential in local approach of fracture , 1987 .

[46]  Z. Bažant,et al.  Nonlocal damage theory , 1987 .

[47]  N. Aravas On the numerical integration of a class of pressure-dependent plasticity models , 1987 .

[48]  J. Lemaître A CONTINUOUS DAMAGE MECHANICS MODEL FOR DUCTILE FRACTURE , 1985 .

[49]  A. Needleman,et al.  Analysis of the cup-cone fracture in a round tensile bar , 1984 .

[50]  A. Needleman,et al.  Void Nucleation Effects in Biaxially Stretched Sheets , 1980 .

[51]  A. Gurson Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media , 1977 .

[52]  A. Cemal Eringen,et al.  A unified theory of thermomechanical materials , 1966 .