Thermodynamic properties of illite, smectite and beidellite by calorimetric methods: Enthalpies of formation, heat capacities, entropies and Gibbs free energies of formation

[1]  Nicolas Jacquemet,et al.  Thermoddem: A geochemical database focused on low temperature water/rock interactions and waste materials , 2012 .

[2]  S. Gaboreau,et al.  Hydration thermodynamics of the SWy-1 montmorillonite saturated with alkali and alkaline-earth cations: A predictive model. , 2011 .

[3]  Teppei Yamada,et al.  Calorimetric and neutron diffraction studies on transitions of water confined in nanoporous copper rubeanate. , 2010, The journal of physical chemistry. B.

[4]  V. Andrade,et al.  Dehydration of dioctahedral aluminous phyllosilicates: thermodynamic modelling and implications for thermobarometric estimates , 2010 .

[5]  D. Mccarty,et al.  Factors responsible for crystal-chemical variations in the solid solutions from illite to aluminoceladonite and from glauconite to celadonite , 2010 .

[6]  Christophe Tournassat,et al.  A robust model for pore-water chemistry of clayrock , 2009 .

[7]  J. Greneche,et al.  Thermodynamic properties of chlorite CCa-2. Heat capacities, heat contents and entropies , 2009 .

[8]  Christophe Tournassat,et al.  Influence of reaction kinetics and mesh refinement on the numerical modelling of concrete/clay interactions , 2009 .

[9]  Scott Altmann,et al.  'Geo'chemical research: a key building block for nuclear waste disposal safety cases. , 2008, Journal of contaminant hydrology.

[10]  J. Rogez,et al.  Thermodynamic properties of anhydrous smectite MX-80, illite IMt-2 and mixed-layer illite–smectite ISCz-1 as determined by calorimetric methods. Part I: Heat capacities, heat contents and entropies , 2007 .

[11]  Kensuke Suzuki,et al.  High resolution solid-state NMR studies on dissolution and alteration of Na-montmorillonite under highly alkaline conditions , 2007 .

[12]  N. Geoffroy,et al.  Investigation of dioctahedral smectite hydration properties by modeling of X-ray diffraction profiles: Influence of layer charge and charge location , 2007 .

[13]  S. Maruyama,et al.  Glass transitions of ordinary and heavy water within silica-gel nanopores. , 2007, Chemistry, an Asian journal.

[14]  D. Mccarty,et al.  Crystal-Chemical Factors Responsible for the Distribution of Octahedral Cations Over trans- and cis-Sites in Dioctahedral 2:1 Layer Silicates , 2006 .

[15]  B. Lanson,et al.  Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: Part I. Montmorillonite hydration properties , 2005 .

[16]  S. Vriend,et al.  A new method to calculate end‐member thermodynamic properties of minerals from their constituent polyhedra I: enthalpy, entropy and molar volume , 2005 .

[17]  G. P. Johari,et al.  Thermodynamic functions of water and ice confined to 2 nm radius pores. , 2005, The Journal of chemical physics.

[18]  E. Dachs,et al.  Precision and accuracy of the heat-pulse calorimetric technique: low-temperature heat capacities of milligram-sized synthetic mineral samples , 2005 .

[19]  M. Cathelineau,et al.  Experimental study of the transformation of smectite at 80 and 300ºC in the presence of Fe oxides , 2004 .

[20]  C. I. Sainz-Díaz,et al.  Monte Carlo simulations of ordering of Al, Fe, and Mg cations in the octahedral sheet of smectites and illites , 2003 .

[21]  R. Denoyel,et al.  Microcalorimetric methods for studying vapour adsorption and wetting of powders , 2002 .

[22]  R. Fischer,et al.  Investigation of the clay fraction (<2 µm) of the clay minerals society reference clays , 2002 .

[23]  P. Vieillard A new method for the prediction of Gibbs free energies of formation of phyllosilicates (10 Å and 14 Å) based on the electronegativity scale , 2002 .

[24]  G. Hoatson,et al.  Modelling one‐ and two‐dimensional solid‐state NMR spectra , 2002 .

[25]  Syriac Béjaoui,et al.  Mécanismes de formation de la glace au sein des pâtes de ciment et des bétons , 2002 .

[26]  C. I. Sainz-Díaz,et al.  Analysis of cation distribution in the octahedral sheet of dioctahedral 2:1 phyllosilicates by using inverse Monte Carlo methods , 2001 .

[27]  P. Vieillard A New Method for the Prediction of Gibbs Free Energies of Formation of Hydrated Clay Minerals Based on the Electronegativity Scale , 2000 .

[28]  S. Hillier Accurate quantitative analysis of clay and other minerals in sandstones by XRD: comparison of a Rietveld and a reference intensity ratio (RIR) method and the importance of sample preparation , 2000, Clay Minerals.

[29]  J. Cuadros Analysis of Fe segregation in the octahedral sheet of bentonitic illite-smectite by means of FTIR, 27 Al MAS NMR and reverse Monte Carlo simulations , 1999 .

[30]  Svein Stølen,et al.  Critical assessment of the enthalpy of fusion of metals used as enthalpy standards at moderate to high temperatures , 1999 .

[31]  J. C. Miltenburg,et al.  Design improvements in adiabatic calorimetry: The heat capacity of cholesterol between 10 and 425 K , 1998 .

[32]  F. Madsen,et al.  Clay mineralogical investigations related to nuclear waste disposal , 1998, Clay Minerals.

[33]  F. Madsen,et al.  Beidellite and Associated Clays from the Delamar Mine and Florida Mountain Area, Idaho , 1997 .

[34]  L. Michot,et al.  Mechanism of Adsorption and Desorption of Water Vapor by Homoionic Montmorillonite: 3. The Mg2+, Ca2+, Sr2+ and Ba2+ Exchanged Forms , 1997 .

[35]  G. Nolze,et al.  POWDER CELL– a program for the representation and manipulation of crystal structures and calculation of the resulting X‐ray powder patterns , 1996 .

[36]  D. Peacor,et al.  Clay Mineral Thermometry—A Critical Perspective , 1995 .

[37]  V. Vinograd Substitution of [4]Al in layer silicates: Calculation of the Al-Si configurational entropy according to 29Si NMR Spectra , 1995 .

[38]  J. Duplay,et al.  A method of estimateng the Gibbs free energies of formation of hydrated and dehydrated clay minerals , 1992 .

[39]  E. Oelkers,et al.  SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 ° C , 1992 .

[40]  H. Flotow,et al.  Thermodynamic studies of mordenite, dehydrated mordenite, and gibbsite , 1992 .

[41]  R. A. Robie,et al.  Heat Capacities of Kaolinite From 7 to 380 K and of DMSO-Intercalated Kaolinite from 20 to 310 K. The Entropy of Kaolinite Al2Si2O5(OH)4 , 1991 .

[42]  J. A. Kittrick,et al.  Illite equilibria in solutions: I. Phase relationships in the system K2OAl2O3SiO2H2O between 25 and 250°C , 1991 .

[43]  Maurice Coten,et al.  Un nouveau calorimetre de solution: Le calsol , 1991 .

[44]  J. Donald Rimstidt,et al.  Estimating the thermodynamic properties (Δ Gof and Δ Hof ) of silicate minerals at 298 K from the sum of polyhedral contributions , 1989 .

[45]  T. Holland Dependence of entropy on volume for silicate and oxide minerals; a review and predictive model , 1989 .

[46]  J. A. Kittrick,et al.  Experimental Validation of the Monophase Structure Model for Montmorillonite Solubility , 1988 .

[47]  G. Whitney,et al.  Experimental investigation of the smectite to illite reaction; dual reaction mechanisms and oxygen-isotope systematics , 1988 .

[48]  T. Iwasaki,et al.  Distribution of Ca and Na Ions in Dioctahedral Smectites and Interstratified Dioctahedral Mica/Smectites , 1988 .

[49]  J. C. Miltenburg,et al.  Construction of an adiabatic calorimeter measurements of the molar heat capacity of synthetic sapphire and of n-heptane , 1987 .

[50]  M. Jackson,et al.  Aqueous dissolution, solubilities and thermodynamic stabilities of common aluminosilicate clay minerals: Kaolinite and smectites , 1986 .

[51]  R. Berman,et al.  Heat capacity of minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-Sio2-TiO2-H2O-CO2: representation, estimation, and high temperature extrapolation , 1985 .

[52]  J. A. Kittrick Solubility Measurements of Phases in Three Illites , 1984 .

[53]  P. Richet,et al.  Thermodynamic properties of quartz, cristobalite and amorphous SiO2: drop calorimetry measurements between 1000 and 1800 K and a review from 0 to 2000 K , 1982 .

[54]  C. Angell,et al.  Heat capacity of water at extremes of supercooling and superheating. Technical report , 1981 .

[55]  T. Matsuo,et al.  Calorimetric study of the glassy state X. Enthalpy relaxation at the glass-transition temperature of hexagonal ice☆ , 1974 .

[56]  J. Hower,et al.  The mineralogy of illites and mixed-layer illite/montmorillonites , 1966 .

[57]  C. H. Shomate Heat Capacities at Low Temperatures of Titanium Dioxide (Rutile and Anatase)1 , 1947 .

[58]  J. W. Stout,et al.  The Entropy of Water and the Third Law of Thermodynamics. The Heat Capacity of Ice from 15 to 273°K. , 1936 .

[59]  D. Gournis,et al.  A neutron diffraction study of alkali cation migration in montmorillonites , 2008 .

[60]  E. Gaucher,et al.  Estimate of clay minerals amounts from XRD pattern modeling: The Arquant model , 2007 .

[61]  P. Landais,et al.  Advances in geochemical research for the underground disposal of high-level, long-lived radioactive waste in a clay formation , 2006 .

[62]  Eric C Gaucher,et al.  Cement/clay interactions-- a review: experiments, natural analogues, and modeling. , 2006, Waste management.

[63]  R. A. Robie,et al.  Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (10[5] pascals) pressure and at higher temperatures , 1995 .

[64]  V. Drits,et al.  X-Ray Diffraction by Disordered Lamellar Structures , 1990 .

[65]  J. A. Kittrick,et al.  The Monophase Model for Magnesium-Saturated Montmorillonite , 1989 .

[66]  東京工業大学工業材料研究所 Report of the Research Laboratory of Engineering Materials , 1976 .

[67]  H. Ulbrich,et al.  Structural and other contributions to the third-law entropies of silicates , 1976 .