Information Theory Orthogonality-embedded space-time codes

We present a unified construction of full-diversity space-time block codes (STBC) called orthogonality-embedded space-time (OEST) codes. Other existing STBC, including orthogonal, quasi-orthogonal and rate-one linear threaded algebraic space-time (LTAST) codes, can also be derived from OEST codes. The new OEST construction is of the form , where Ak and Bk are linear-dispersion matrices of orthogonal STBC and Cks are circulant matrices. The circulant matrices encode the data vectors, which can be completely separately detected at the receiver, greatly reducing the decoding complexity. For the same number of transmit antennas, several variants of OEST codes can be constructed allowing a tradeoff among the rate, performance and decoding complexity. A new rate-one STBC derived from OEST codes, called semi-orthogonal algebraic space-time codes, is shown to achieve near capacity of multi-input single-output channels and performs better than several existing STBC. Copyright © 2007 John Wiley & Sons, Ltd.

[1]  David Tse,et al.  Fundamentals of Wireless Communication , 2005 .

[2]  Chintha Tellambura,et al.  A New Class of Space-Time Codes via Orthogonal Designs, Circulant Basis, and Kronecker Product , 2006, 2006 IEEE International Symposium on Information Theory.

[3]  Gregory W. Wornell,et al.  Structured space-time block codes with optimal diversity-multiplexing tradeoff and minimum delay , 2003, GLOBECOM '03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489).

[4]  Steven D. Gray,et al.  Transmit diversity in 3G CDMA systems , 2002, IEEE Commun. Mag..

[5]  Chau Yuen,et al.  Decoding of quasiorthogonal space-time block code with noise whitening , 2003, 14th IEEE Proceedings on Personal, Indoor and Mobile Radio Communications, 2003. PIMRC 2003..

[6]  Ari Hottinen,et al.  Minimal non-orthogonality rate 1 space-time block code for 3+ Tx antennas , 2000, 2000 IEEE Sixth International Symposium on Spread Spectrum Techniques and Applications. ISSTA 2000. Proceedings (Cat. No.00TH8536).

[7]  Constantinos B. Papadias,et al.  Analysis and performance of some basic space-time architectures , 2003, IEEE J. Sel. Areas Commun..

[8]  Genyuan Wang,et al.  On optimal multilayer cyclotomic space-time code designs , 2005, IEEE Transactions on Information Theory.

[9]  W. C. Jakes,et al.  Microwave Mobile Communications , 1974 .

[10]  B. Sundar Rajan,et al.  Full-diversity, high-rate space-time block codes from division algebras , 2003, IEEE Trans. Inf. Theory.

[11]  Jennifer Seberry,et al.  Orthogonal Designs: Quadratic Forms and Hadamard Matrices , 1979 .

[12]  Hamid Jafarkhani A quasi-orthogonal space-time block code , 2001, IEEE Trans. Commun..

[13]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[14]  Constantinos B. Papadias,et al.  Capacity-approaching space-time codes for systems employing four transmitter antennas , 2003, IEEE Trans. Inf. Theory.

[15]  Georgios B. Giannakis,et al.  Space-time diversity systems based on linear constellation precoding , 2003, IEEE Trans. Wirel. Commun..

[16]  Emre Telatar,et al.  Capacity of Multi-antenna Gaussian Channels , 1999, Eur. Trans. Telecommun..

[17]  Karim Abed-Meraim,et al.  Diagonal algebraic space-time block codes , 2002, IEEE Trans. Inf. Theory.

[18]  Geoffrey Ye Li,et al.  Clustered OFDM with channel estimation for high rate wireless data , 2001, IEEE Trans. Commun..

[19]  Chintha Tellambura,et al.  Optimal rotations for quasi-orthogonal STBC with two-dimensional constellations , 2005, GLOBECOM '05. IEEE Global Telecommunications Conference, 2005..

[20]  Gerard Joseph Foschini,et al.  Analysis and Performance of Some Basic , 2003 .

[21]  Chintha Tellambura,et al.  A general method to decode ABBA quasi-orthogonal space-time block codes , 2006, IEEE Communications Letters.

[22]  Xiang-Gen Xia,et al.  Closed-form designs of complex orthogonal space-time block codes of rates (k+1)/(2k) for 2k-1 or 2k transmit antennas , 2005, IEEE Transactions on Information Theory.

[23]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[24]  Norman C. Beaulieu,et al.  On diagonal algebraic space-time block codes , 2003, IEEE Trans. Commun..

[25]  Changchuan Yin,et al.  A squaring method to simplify the decoding of orthogonal space-time block codes , 2001, IEEE Trans. Commun..

[26]  Ran Gozali,et al.  Space-Time Codes for High Data Rate Wireless Communications , 2002 .

[27]  A. Robert Calderbank,et al.  Space-Time block codes from orthogonal designs , 1999, IEEE Trans. Inf. Theory.

[28]  Kyung Sup Kwak,et al.  On decoding algorithm and performance of space-time block codes , 2005, IEEE Trans. Wirel. Commun..

[29]  Gerard J. Foschini,et al.  Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas , 1996, Bell Labs Technical Journal.

[30]  Xue-Bin Liang,et al.  Orthogonal designs with maximal rates , 2003, IEEE Trans. Inf. Theory.

[31]  Chintha Tellambura,et al.  Capacity-approaching semi-orthogonal space-time block codes , 2005, GLOBECOM '05. IEEE Global Telecommunications Conference, 2005..

[32]  Markus Rupp,et al.  High diversity with simple space time block-codes and linear receivers , 2003, GLOBECOM '03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489).

[33]  T. Gulliver,et al.  Capacity and error probability analysis for orthogonal space-time block codes over fading channels , 2005, IEEE Transactions on Wireless Communications.

[34]  Mohamed Oussama Damen,et al.  Universal space-time coding , 2003, IEEE Trans. Inf. Theory.

[35]  A. Robert Calderbank,et al.  Space-Time Codes for High Data Rate Wireless Communications : Performance criterion and Code Construction , 1998, IEEE Trans. Inf. Theory.

[36]  Babak Hassibi,et al.  High-rate codes that are linear in space and time , 2002, IEEE Trans. Inf. Theory.

[37]  Richard D. Gitlin,et al.  Optimization of Two-Dimensional Signal Constellations in the Presence of Gaussian Noise , 1974, IEEE Trans. Commun..

[38]  Lizhong Zheng,et al.  Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels , 2003, IEEE Trans. Inf. Theory.

[39]  Norman C. Beaulieu,et al.  Linear threaded algebraic space-time constellations , 2003, IEEE Trans. Inf. Theory.

[40]  Ari Hottinen,et al.  Square-matrix embeddable space-time block codes for complex signal constellations , 2002, IEEE Trans. Inf. Theory.

[41]  Norman C. Beaulieu,et al.  Systematic construction of full diversity algebraic constellations , 2003, IEEE Trans. Inf. Theory.

[42]  Siavash M. Alamouti,et al.  A simple transmit diversity technique for wireless communications , 1998, IEEE J. Sel. Areas Commun..

[43]  Giuseppe Caire,et al.  On maximum-likelihood detection and the search for the closest lattice point , 2003, IEEE Trans. Inf. Theory.