Adenosine triphosphate release by osmotic shock and hemoglobin A1C in diabetic subjects' erythrocytes.

[1]  L. Mazzanti,et al.  Effects of diabetes mellitus on structural and functional properties of erythrocyte membranes. , 1993, Membrane biochemistry.

[2]  C. Watała Hyperglycaemia alters the physico-chemical properties of proteins in erythrocyte membranes of diabetic patients. , 1992, The International journal of biochemistry.

[3]  D. McMillan,et al.  Lowered membrane fluidity of younger erythrocytes in diabetes. , 1992, Diabetes research and clinical practice.

[4]  R. Nagel,et al.  Oxidation of Spectrin and Deformability Defects in Diabetic Erythrocytes , 1991, Diabetes.

[5]  R. Abbate,et al.  Age-Related Changes in Red Blood Cell Lipids , 1991, Angiology.

[6]  S. Ishihara,et al.  ATP bioluminescence assay for fapid antibacterial susceptibility testing. , 1991 .

[7]  M. Garner,et al.  Na+-K+-ATPase and Changes in ATP Hydrolysis, Monovalent Cation Affinity, and K+ Occlusion in Diabetic and Galactosemic Rats , 1990, Diabetes.

[8]  I. Birlouez-Aragon,et al.  Evidence for a relationship between protein glycation and red blood cell membrane fluidity. , 1990, Biochemical and biophysical research communications.

[9]  E. Schram,et al.  Control of experimental factors involved in luminescent ATP assays , 1990 .

[10]  S. Jain,et al.  Erythrocyte Membrane Lipid Peroxidation and Glycosylated Hemoglobin in Diabetes , 1989, Diabetes.

[11]  I. Testa,et al.  Modifications induced by diabetes on the physicochemical and functional properties of erythrocyte plasma membrane , 1989, European journal of clinical investigation.

[12]  J. Turtle,et al.  The Effect of Improved Control on Blood Filtration Properties and Non‐enzymatic Glycosylation of Erythrocyte Proteins in Type 2 Diabetes , 1989, Diabetic medicine : a journal of the British Diabetic Association.

[13]  D. Hebert,et al.  Characterization of two independent modes of action of ATP on human erythrocyte sugar transport. , 1989, Biochemistry.

[14]  H. Gin,et al.  Phospholipid and fatty acid composition of erythrocytes in type I and type II diabetes. , 1989, Metabolism: clinical and experimental.

[15]  R. Dean,et al.  Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and ageing. , 1988, The Biochemical journal.

[16]  V. Kalra,et al.  Alterations in Organization of Phospholipids in Erythrocytes as Factor in Adherence to Endothelial Cells in Diabetes Mellitus , 1988, Diabetes.

[17]  S. Rizvi,et al.  Red cell membrane (Na+ +K+)-ATPase in diabetes mellitus. , 1987, Biochemical and biophysical research communications.

[18]  L. Derick,et al.  Visualization of the hexagonal lattice in the erythrocyte membrane skeleton , 1987, The Journal of cell biology.

[19]  E Ernst,et al.  Altered Red and White Blood Cell Rheology in Type II Diabetes , 1986, Diabetes.

[20]  A. Spector,et al.  ATP hydrolysis kinetics of Na,K-ATPase in cataract. , 1986, Experimental eye research.

[21]  M. Serio,et al.  ATP and ADP content of human ejaculated spermatozoa. I. Relationship with semen physical parameters in normal donors and oligozoospermic patients. , 1982, International journal of andrology.

[22]  J. Rifkind,et al.  Age dependent changes in osmotic hemolysis of human erythrocytes. , 1980, Journal of gerontology.

[23]  T. Kamada,et al.  Higher Levels of Erythrocyte Membrane Microviscosity in Diabetes , 1979, Diabetes.

[24]  P. Dunn,et al.  Further development and automation of a high pressure liquid chromatography method for the determination of glycosylated hemoglobins. , 1979, Metabolism: clinical and experimental.

[25]  D. McMillan,et al.  Reduced Erythrocyte Deformability in Diabetes , 1978, Diabetes.

[26]  J. McDonald,et al.  A High-performance Liquid Chromatography Method for Hemoglobin A1c , 1978, Diabetes.

[27]  H. Schmid-schönbein,et al.  Red-cell aggregation and red-cell deformability in diabetes. , 1976, Diabetes.