Computing the Maximum using (min, +) Formulas

We study computation by formulas over (min,+). We consider the computation of max{x_1,...,x_n} over N as a difference of (min,+) formulas, and show that size n + n \log n is sufficient and necessary. Our proof also shows that any (min,+) formula computing the minimum of all sums of n-1 out of n variables must have n \log n leaves; this too is tight. Our proofs use a complexity measure for (min,+) functions based on minterm-like behaviour and on the entropy of an associated graph.

[1]  Stephen Warshall,et al.  A Theorem on Boolean Matrices , 1962, JACM.

[2]  Stasys Jukna Lower Bounds for Tropical Circuits and Dynamic Programs , 2014, Theory of Computing Systems.

[3]  László Lovász,et al.  Entropy splitting for antiblocking corners and perfect graphs , 1990, Comb..

[4]  Gábor Simonyi,et al.  Graph entropy: A survey , 1993, Combinatorial Optimization.

[5]  Richard Bellman,et al.  ON A ROUTING PROBLEM , 1958 .

[6]  Georg Schnitger,et al.  On the optimality of Bellman-Ford-Moore shortest path algorithm , 2016, Theor. Comput. Sci..

[7]  E. Allender Arithmetic Circuits and Counting Complexity Classes , 2004 .

[8]  János Körner,et al.  New Bounds for Perfect Hashing via Information Theory , 1988, Eur. J. Comb..

[9]  Stasys Jukna,et al.  Tropical Complexity, Sidon Sets, and Dynamic Programming , 2016, SIAM J. Discret. Math..

[10]  J. Friedman Constructing O(n log n) Size Monotone Formulae for the k-th Elementary Symmetric Polynomial of n Boolean Variables , 1984, FOCS.

[11]  M. Held,et al.  A dynamic programming approach to sequencing problems , 1962, ACM National Meeting.

[12]  Avi Wigderson,et al.  Lower Bounds on Formula Size of Boolean Functions Using Hypergraph Entropy , 1995, SIAM J. Discret. Math..

[13]  Lane A. Hemaspaandra,et al.  The Complexity Theory Companion , 2002, Texts in Theoretical Computer Science An EATCS Series.

[14]  L. R. Ford,et al.  NETWORK FLOW THEORY , 1956 .

[15]  Mark Jerrum,et al.  Some Exact Complexity Results for Straight-Line Computations over Semirings , 1982, JACM.

[16]  Jaikumar Radhakrishnan,et al.  Better Lower Bounds for Monotone Threshold Formulas , 1997, J. Comput. Syst. Sci..