Color map-based image fusion

An image fusion system accepts two source images and produces a 'better' fused image. The term 'better' differs from one context to another. In some contexts, it means holding more information. In other contexts, it means getting more accurate results or readings. In general, images hold more than just the color values. Histogram distribution, dynamic range of colors, and color maps are all as valuable as the color values presenting the pictorial information of the image. This paper studies the problems of fusing images from different domains. It proposes a method to extend the fusion algorithms to fuse image properties that define the interpretation of captured images as well.

[1]  Christine Pohl,et al.  Multisensor image fusion in remote sensing: concepts, methods and applications , 1998 .

[2]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[3]  Rick S. Blum,et al.  A categorization of multiscale-decomposition-based image fusion schemes with a performance study for a digital camera application , 1999, Proc. IEEE.

[4]  Bülent Sankur,et al.  Color image segmentation using histogram multithresholding and fusion , 2001, Image Vis. Comput..

[5]  Alexander Toet,et al.  A morphological pyramidal image decomposition , 1989, Pattern Recognit. Lett..

[6]  Alexander Toet,et al.  Merging thermal and visual images by a contrast pyramid , 1989 .

[7]  Yun He,et al.  A multiscale approach to pixel-level image fusion , 2005, Integr. Comput. Aided Eng..

[8]  Junbin Gao,et al.  Some remarks on Kalman filters for the multisensor fusion , 2002, Inf. Fusion.

[9]  Oliver Rockinger,et al.  Image sequence fusion using a shift-invariant wavelet transform , 1997, Proceedings of International Conference on Image Processing.

[10]  Jung-Hua Wang,et al.  Image segmentation via self-organising fusion , 2006 .

[11]  Lucien Wald,et al.  Data fusion : a conceptual approach for an efficient exploitation of remote sensing images , 1998 .

[12]  Tao Chen,et al.  Remote sensing image fusion based on ridgelet transform , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[13]  Lucien Wald,et al.  Some terms of reference in data fusion , 1999, IEEE Trans. Geosci. Remote. Sens..

[14]  Jon Atli Benediktsson,et al.  Decision Fusion for the Classification of Urban Remote Sensing Images , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Xun Wang,et al.  An Image Segmentation Framework Based on Patch Segmentation Fusion , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[16]  Arthur P. Dempster,et al.  A Generalization of Bayesian Inference , 1968, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[17]  B. S. Manjunath,et al.  Multisensor Image Fusion Using the Wavelet Transform , 1995, CVGIP Graph. Model. Image Process..

[18]  J. Boucher,et al.  Multisource Image Fusion Algorithm Based On A New Evidential Reasoning Approach , 2004 .

[19]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[20]  Zhou Wang,et al.  Quality-aware images , 2006, IEEE Transactions on Image Processing.

[21]  Luciano Alparone,et al.  Remote sensing image fusion using the curvelet transform , 2007, Inf. Fusion.

[22]  Alexei A. Efros,et al.  Image quilting for texture synthesis and transfer , 2001, SIGGRAPH.

[23]  Alexander Toet,et al.  Image fusion by a ration of low-pass pyramid , 1989, Pattern Recognit. Lett..

[24]  Terrance L. Huntsberger,et al.  Wavelet-based sensor fusion , 1993, Other Conferences.

[25]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[26]  Paolo Gamba,et al.  Semi-automatic choice of scale-dependent features for satellite SAR image classification , 2006, Pattern Recognit. Lett..