On the Conservation Laws and Exact Solutions of a Modified Hunter-Saxton Equation

We study the modified Hunter-Saxton equation which arises in modelling of nematic liquid crystals. We obtain local conservation laws using the nonlocal conservation method and multiplier approach. In addition, using the relationship between conservation laws and Lie-point symmetries, some reductions and exact solutions are obtained.

[1]  Thomas Wolf,et al.  A comparison of four approaches to the calculation of conservation laws , 2002, European Journal of Applied Mathematics.

[3]  A. Sjöberg,et al.  Double reduction of PDEs from the association of symmetries with conservation laws with applications , 2007, Appl. Math. Comput..

[5]  N. Ibragimov A new conservation theorem , 2007 .

[6]  F. Seel,et al.  Notizen: Kinetik und Chemismus der Nitrosylierung von Cyano- und Carbonyl-Metall-Komplexen des Eisens und Kobalts , 1962 .

[7]  秦 孟兆,et al.  RELATIONSHIP BETWEEN SYMMETRIES AND CONSERVATION LAWS OF NONLINEAR EVOLUTION EQUATIONS , 1979 .

[8]  G. Bluman,et al.  Direct construction method for conservation laws of partial differential equations Part II: General treatment , 2001, European Journal of Applied Mathematics.

[9]  Fazal M. Mahomed,et al.  Noether-Type Symmetries and Conservation Laws Via Partial Lagrangians , 2006 .

[10]  Stephen C. Anco,et al.  Direct construction method for conservation laws of partial differential equations Part I: Examples of conservation law classifications , 2001, European Journal of Applied Mathematics.

[11]  D. P. Mason,et al.  Comparison of different approaches to conservation laws for some partial differential equations in fluid mechanics , 2008, Appl. Math. Comput..

[12]  J. K. Hunter,et al.  Dynamics of director fields , 1991 .

[13]  J. K. Hunter,et al.  On a completely integrable nonlinear hyperbolic variational equation , 1994 .

[14]  H. Steudel Über die Zuordnung zwischen lnvarianzeigenschaften und Erhaltungssätzen , 1962 .

[15]  B. Khesin,et al.  Euler equations on homogeneous spaces and Virasoro orbits , 2002, math/0210397.

[16]  A. Cheviakov Computation of fluxes of conservation laws , 2009, 0907.0689.

[17]  J H Nixon,et al.  Application of Lie groups and differentiable manifolds to general methods for simplifying systems of partial differential equations , 1991 .

[18]  K. R. Adem,et al.  Exact Solutions and Conservation Laws of a (2+1)-Dimensional Nonlinear KP-BBM Equation , 2013 .