A SUPER-EDDINGTON, COMPTON-THICK WIND IN GRO J1655–40?

During its 2005 outburst, GRO J1655–40 was observed at high spectral resolution with the Chandra High-Energy Transmission Grating Spectrometer, revealing a spectrum rich with blueshifted absorption lines indicative of an accretion disk wind—apparently too hot, too dense, and too close to the black hole to be driven by radiation pressure or thermal pressure (Miller et al.). However, this exotic wind represents just one piece of the puzzle in this outburst, as its presence coincides with an extremely soft and curved X-ray continuum spectrum, remarkable X-ray variability (Uttley & Klein-Wolt), and a bright, unexpected optical/infrared blackbody component that varies on the orbital period. Focusing on the X-ray continuum and the optical/infrared/UV spectral energy distribution, we argue that the unusual features of this “hypersoft state” are natural consequences of a super-Eddington Compton-thick wind from the disk: the optical/infrared blackbody represents the cool photosphere of a dense, extended outflow, while the X-ray emission is explained as Compton scattering by the relatively cool, optically thick wind. This wind obscures the intrinsic luminosity of the inner disk, which we suggest may have been at or above the Eddington limit.

[1]  D. Frantzeskakis,et al.  Asymptotic reductions and solitons of nonlocal nonlinear Schrödinger equations , 2016, 1603.04714.

[2]  R. Urquhart,et al.  Optically thick outflows in ultraluminous supersoft sources , 2015, 1511.05275.

[3]  A. Kong,et al.  Revisiting the ultraluminous supersoft source in M 101: an optically thick outflow model , 2015, 1511.04797.

[4]  University of Cambridge,et al.  POWERFUL, ROTATING DISK WINDS FROM STELLAR-MASS BLACK HOLES , 2015, The Astrophysical Journal.

[5]  P. Uttley,et al.  The remarkable timing properties of a ‘hypersoft’ state in GRO J1655-40 , 2015, 1504.08313.

[6]  D. Walton,et al.  A spectral-timing model for ULXs in the supercritical regime , 2014, 1412.4532.

[7]  E. Nakar,et al.  The nature of ULX source M101 X-1: optically thick outflow from a stellar mass black hole , 2014, 1411.0681.

[8]  S. Migliari,et al.  XMM-Newton observations reveal the disappearance of the wind in 4U 1630−47 , 2014, 1409.3406.

[9]  P. Edwards,et al.  A LINK BETWEEN X-RAY EMISSION LINES AND RADIO JETS IN 4U 1630–47? , 2014, 1402.5140.

[10]  Didier Barret,et al.  THE DISK WIND IN THE RAPIDLY SPINNING STELLAR-MASS BLACK HOLE 4U 1630−472 OBSERVED WITH NuSTAR , 2014, 1401.3646.

[11]  A. Tzioumis,et al.  The 'universal' radio/X-ray flux correlation : the case study of the black hole GX 339-4 , 2012, 1211.1600.

[12]  J. Poutanen,et al.  Hot accretion flow in black hole binaries: a link connecting X-rays to the infrared , 2012, 1210.0236.

[13]  C. Reynolds CONSTRAINTS ON COMPTON-THICK WINDS FROM BLACK HOLE ACCRETION DISKS: CAN WE SEE THE INNER DISK? , 2012, 1210.3029.

[14]  P. Casella,et al.  Discovery of two simultaneous non-harmonically related quasi-periodic oscillations in the 2005 outburst of the black hole binary GRO J1655−40 , 2012, 1209.0327.

[15]  Ashley L. King,et al.  REGULATION OF BLACK HOLE WINDS AND JETS ACROSS THE MASS SCALE , 2012, 1205.4222.

[16]  R. Fender,et al.  Assessing luminosity correlations via cluster analysis: evidence for dual tracks in the radio/X-ray domain of black hole X-ray binaries , 2012, 1203.4263.

[17]  J. Neilsen,et al.  A HYBRID MAGNETICALLY/THERMALLY DRIVEN WIND IN THE BLACK HOLE GRO J1655−40? , 2012, 1202.6053.

[18]  J. Lee,et al.  Optical and near-infrared spectroscopy of the black hole GX 339−4 – I. A focus on the continuum in the low/hard and high/soft states , 2012, 1202.3984.

[19]  G. Ponti,et al.  Ubiquitous equatorial accretion disc winds in black hole soft states , 2012, 1201.4172.

[20]  M. Rupen,et al.  AN EXTREME X-RAY DISK WIND IN THE BLACK HOLE CANDIDATE IGR J17091−3624 , 2011, 1112.3648.

[21]  H. F. Astrophysics,et al.  Accretion disc wind variability in the states of the microquasar GRS 1915+105 , 2011, 1112.1066.

[22]  Jon M. Miller,et al.  SUZAKU OBSERVATIONS OF 4U 1957+11: POTENTIALLY THE MOST RAPIDLY SPINNING BLACK HOLE IN (THE HALO OF) THE GALAXY , 2011, 1109.6008.

[23]  P. D'Avanzo,et al.  A VARIABLE MID-INFRARED SYNCHROTRON BREAK ASSOCIATED WITH THE COMPACT JET IN GX 339–4 , 2011, 1109.4143.

[24]  Ronald A. Remillard,et al.  THE PHYSICS OF THE “HEARTBEAT” STATE OF GRS 1915+105 , 2011, 1106.0298.

[25]  K. Pottschmidt,et al.  A MULTIWAVELENGTH STUDY OF CYGNUS X-1: THE FIRST MID-INFRARED SPECTROSCOPIC DETECTION OF COMPACT JETS , 2011, 1105.0336.

[26]  M. Coriat,et al.  Radiatively efficient accreting black holes in the hard state: the case study of H1743-322 , 2011, 1101.5159.

[27]  Jelle S. Kaastra,et al.  High-Resolution X-Ray Spectroscopy , 2011 .

[28]  T. Belloni,et al.  Fast variability as a tracer of accretion regimes in black hole transients , 2010, 1008.0558.

[29]  J. Rodriguez,et al.  LONG-TERM MULTI-WAVELENGTH STUDIES OF GRS 1915+105. I. A HIGH-ENERGY AND MID-INFRARED FOCUS WITH RXTE/INTEGRAL AND SPITZER , 2010, 1004.3032.

[30]  U. Michigan,et al.  ON THE PROPERTIES OF THERMAL DISK WINDS IN X-RAY TRANSIENT SOURCES: A CASE STUDY OF GRO J1655−40 , 2010, The Astrophysical Journal.

[31]  S. Markoff,et al.  Evidence for a compact jet dominating the broad-band spectrum of the black hole accretor XTE J1550–564 , 2010, 1002.3729.

[32]  T. Belloni States and transitions in black-hole binaries , 2009, 0909.2474.

[33]  M. Gierliński,et al.  Compton scattering as the explanation of the peculiar X-ray properties of Cyg X-3 , 2009, 0905.1086.

[34]  R. Davies,et al.  Astronomical Society of the Pacific Conference Series , 2010 .

[35]  M. Coriat,et al.  The infrared/X-ray correlation of GX 339−4: probing hard X-ray emission in accreting black holes , 2009, 0909.3283.

[36]  T. Belloni,et al.  Jets from black hole X-ray binaries: testing, refining and extending empirical models for the coupling to X-rays , 2009, 0903.5166.

[37]  E. Cackett,et al.  THE FUNDAMENTAL PLANE OF ACCRETION ONTO BLACK HOLES WITH DYNAMICAL MASSES , 2009, 0906.3285.

[38]  Claudio Mendoza,et al.  SPECTRUM SYNTHESIS MODELING OF THE X-RAY SPECTRUM OF GRO J1655-40 TAKEN DURING THE 2005 OUTBURST , 2009, 0905.4206.

[39]  J. Neilsen,et al.  Accretion disk winds as the jet suppression mechanism in the microquasar GRS 1915+105 , 2009, Nature.

[40]  K. Yamaoka,et al.  GRS 1915+105 IN “SOFT STATE”: NATURE OF ACCRETION DISK WIND AND ORIGIN OF X-RAY EMISSION , 2009, 0901.1982.

[41]  R. Narayan,et al.  A Simple Comptonization Model , 2008, 0810.1758.

[42]  M. Gierliński,et al.  Reprocessing of X-rays in the outer accretion disc of the black hole binary XTE J1817-330 , 2008, 0808.4064.

[43]  U. Cambridge,et al.  The Accretion Disk Wind in the Black Hole GRO J1655–40 , 2008, 0802.2026.

[44]  Aya Kubota,et al.  Modelling the behaviour of accretion flows in X-ray binaries , 2007, 0708.0148.

[45]  C. Bailyn,et al.  Tracing the Jet Contribution to the Mid-IR over the 2005 Outburst of GRO J1655–40 via Broadband Spectral Modeling , 2007, 0707.4500.

[46]  T. Maccarone,et al.  Parallel tracks in infrared versus X-ray emission in black hole X-ray transient outbursts: a hysteresis effect? , 2007, 0705.3594.

[47]  J. Miller,et al.  XMM-Newton and INTEGRAL spectroscopy of the microquasar GRO J1655-40 during its 2005 outburst , 2006, astro-ph/0610873.

[48]  Juri Poutanen,et al.  Supercritically accreting stellar mass black holes as ultraluminous X-ray sources , 2006, astro-ph/0609274.

[49]  H. Netzer A Thermal Wind Model for the X-Ray Outflow in GRO J1655–40 , 2006 .

[50]  Global optical/infrared-X-ray correlations in X-ray binaries: quantifying disc and jet contributions , 2006, astro-ph/0606721.

[51]  J. McClintock,et al.  X-Ray Properties of Black-Hole Binaries , 2006, astro-ph/0606352.

[52]  É. Depagne,et al.  On the distance of GRO J1655-40 , 2006, astro-ph/0606269.

[53]  D. Steeghs,et al.  The magnetic nature of disk accretion onto black holes , 2006, Nature.

[54]  A. Merloni,et al.  A radio-emitting outflow in the quiescent state of A0620−00: implications for modelling low-luminosity black hole binaries , 2006, astro-ph/0605376.

[55]  A. R. King,et al.  The nature of SS433 and the ultraluminous X-ray sources , 2006, astro-ph/0604497.

[56]  S. Migliari,et al.  Jet-dominated advective systems: radio and X-ray luminosity dependence on the accretion rate , 2006, astro-ph/0603731.

[57]  A. Robin,et al.  Modelling the Galactic Interstellar Extinction Distribution in Three Dimensions , 2005, astro-ph/0604427.

[58]  Sergio Campana,et al.  The 2005 outburst of GRO J1655−40: spectral evolution of the rise, as observed by Swift , 2005 .

[59]  S. Markoff,et al.  Going with the Flow: Can the Base of Jets Subsume the Role of Compact Accretion Disk Coronae? , 2005, astro-ph/0509028.

[60]  Mark L. Schattenburg,et al.  The Chandra High‐Energy Transmission Grating: Design, Fabrication, Ground Calibration, and 5 Years in Flight , 2005, astro-ph/0507035.

[61]  C. Bailyn,et al.  OIR decline in GRO J1655-40 , 2005 .

[62]  Charles D. Bailyn,et al.  Multiwavelength Observations of the 2002 Outburst of GX 339–4: Two Patterns of X-Ray-Optical/Near-Infrared Behavior , 2005, astro-ph/0501349.

[63]  T. Belloni,et al.  The Evolution of Black Hole States , 2004, astro-ph/0412597.

[64]  T. Belloni,et al.  A Unified Model for Black Hole X-Ray Binary Jets? , 2004, astro-ph/0506469.

[65]  C. Bailyn,et al.  The 2002 Outburst of the Black Hole X-Ray Binary 4U 1543–47: Optical and Infrared Light Curves , 2004, astro-ph/0408156.

[66]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[67]  H. Falcke,et al.  A scheme to unify low-power accreting black holes Jet-dominated accretion flows and the radio/X-ray correlation , 2003, astro-ph/0305335.

[68]  Peter W. A. Roming,et al.  The Swift Ultra-Violet/Optical Telescope , 2002, SPIE Optics + Photonics.

[69]  Thomas J. Maccarone,et al.  Do X-ray binary spectral state transition luminosities vary? , 2003, astro-ph/0308036.

[70]  K. Horne,et al.  The remarkable rapid X-ray, ultraviolet, optical and infrared variability in the black hole XTE J1118+480 , 2003, astro-ph/0306626.

[71]  J. McClintock,et al.  Black Hole Binaries , 2003, astro-ph/0306213.

[72]  Cambridge,et al.  Black hole winds , 2003, astro-ph/0305541.

[73]  T. D. Matteo,et al.  A Fundamental plane of black hole activity , 2003, astro-ph/0305261.

[74]  G. Pooley,et al.  A universal radio-X-ray correlation in low/hard state black hole binaries , 2003, astro-ph/0305231.

[75]  A. King,et al.  A Variable Ultraluminous Supersoft X-Ray Source in “The Antennae”: Stellar-Mass Black Hole or White Dwarf? , 2003, astro-ph/0304554.

[76]  Darren L. DePoy,et al.  A Novel Double Imaging Camera (ANDICAM) , 2003, SPIE Astronomical Telescopes + Instrumentation.

[77]  A. Tzioumis,et al.  Radio/X-ray correlation in the low/hard state of GX 339-4 , 2003, astro-ph/0301436.

[78]  M. Gierliński,et al.  Observing the effects of the event horizon in black holes , 2002, astro-ph/0211206.

[79]  D. Proga Numerical Simulations of Mass Outflows Driven from Accretion Disks by Radiation and Magnetic Forces , 2002, astro-ph/0210642.

[80]  W. Pence,et al.  Chandra Observation of Luminous and Ultraluminous X-Ray Binaries in M101 , 2002, astro-ph/0209166.

[81]  A. Moorwood,et al.  Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, , 2003 .

[82]  S. Corbel,et al.  Near-Infrared Synchrotron Emission from the Compact Jet of GX 339–4 , 2002, astro-ph/0205402.

[83]  Greenbelt,et al.  On the Role of the Ultraviolet and X-Ray Radiation in Driving a Disk Wind in X-Ray Binaries , 2001, Astrophysical Journal.

[84]  Andrew King,et al.  Accretion Power in Astrophysics: Contents , 2002 .

[85]  Andrew King,et al.  Accretion Power in Astrophysics: Third Edition , 2002 .

[86]  A. Fabian,et al.  High-Resolution Chandra HETGS and Rossi X-Ray Timing Explorer Observations of GRS 1915+105: A Hot Disk Atmosphere and Cold Gas Enriched in Iron and Silicon , 2001, astro-ph/0111132.

[87]  J. Orosz,et al.  Optical and Infrared Photometry of the Microquasar GRO J1655–40 in Quiescence , 2001, astro-ph/0101337.

[88]  Sera Markoff,et al.  A jet model for the broadband spectrum of XTE J1118+480. Synchrotron emission from radio to X-rays in the , 2000, astro-ph/0010560.

[89]  R. Fender Powerful jets from black hole X-ray binaries in low/hard X-ray states , 2000, astro-ph/0008447.

[90]  R. McCray,et al.  Astrophysical Journal, in press Preprint typeset using L ATEX style emulateapj v. 26/01/00 ON THE ABSORPTION OF X-RAYS IN THE INTERSTELLAR MEDIUM , 2000 .

[91]  D. Proga Winds from Accretion Disks Driven by Radiation and Magnetocentrifugal Force , 2000, astro-ph/0002441.

[92]  R. Hunstead,et al.  Optical Spectroscopy of GRO J1655–40 , 1999, astro-ph/9911318.

[93]  M. Gierliński,et al.  Radiation mechanisms and geometry of cygnus X-1 in the soft state , 1999, astro-ph/9905146.

[94]  S. Corbel,et al.  Quenching of the Radio Jet during the X-Ray High State of GX 339–4 , 1999, astro-ph/9905121.

[95]  C. Done,et al.  The 1989 May outburst of the soft X‐ray transient GS 2023+338 (V404 Cyg) , 1999, astro-ph/9904304.

[96]  Edward L. Fitzpatrick,et al.  Correcting for the Effects of Interstellar Extinction , 1998, astro-ph/9809387.

[97]  K. Horne,et al.  The 1996 outburst of GRO J1655-40: the challenge of interpreting the multiwavelength spectra , 1998, astro-ph/9803145.

[98]  R. Narayan,et al.  Advection-Dominated Accretion and the Spectral States of Black Hole X-Ray Binaries: Application to Nova Muscae 1991 , 1997, astro-ph/9705237.

[99]  J. Orosz,et al.  Optical Observations of GRO J1655–40 in Quiescence. I. A Precise Mass for the Black Hole Primary , 1996, astro-ph/9610211.

[100]  K. Mitsuda,et al.  X-Ray Imaging and Spectroscopy of Cosmic Hot Plasmas , 1997 .

[101]  槙野 文命,et al.  X-ray imaging and spectroscopy of cosmic hot plasmas : proceedings of International symposium on X-ray Astronomy, ASCA third anniversary, March 11-14, 1996, Waseda University, Tokyo , 1997 .

[102]  A. Zdziarski,et al.  Broad-band γ-ray and X-ray spectra of NGC 4151 and their implications for physical processes and geometry , 1996, astro-ph/9607015.

[103]  J. Bell,et al.  X-ray-heated coronae and winds from accretion disks: Time-dependent two-dimensional hydrodynamics with adaptive mesh refinement , 1996 .

[104]  R. M. Hjellming,et al.  Episodic ejection of relativistic jets by the X-ray transient GRO J1655 - 40 , 1995, Nature.

[105]  S. Davies An improved test for periodicity , 1990 .

[106]  C. McKee,et al.  Compton heated winds and coronae above accretion disks. I. Dynamics , 1983 .

[107]  P. Eggleton Approximations to the radii of Roche lobes , 1983 .

[108]  R. Blandford,et al.  Hydromagnetic flows from accretion discs and the production of radio jets , 1982 .

[109]  R. Giacconi,et al.  Observation of a correlated X-ray-radio transition in Cygnus X-1. , 1972 .