Denotational semantics of hybrid automata

We introduce a denotational semantics for non-linear hybrid automata, and relate it to the operational semantics given in terms of hybrid trajectories. The semantics is defined as least fixpoint of an operator on the continuous domain of functions of time that take values in the lattice of compact subsets of n-dimensional Euclidean space. The semantic function assigns to every point in time the set of states the automaton can visit at that time, starting from one of its initial states. Our main results are the correctness and computational adequacy of the denotational semantics with respect to the operational semantics and the fact that the denotational semantics is computable.

[1]  K. Hofmann,et al.  Continuous Lattices and Domains , 2003 .

[2]  Thomas A. Henzinger,et al.  Beyond HYTECH: Hybrid Systems Analysis Using Interval Numerical Methods , 2000, HSCC.

[3]  S. Shankar Sastry,et al.  Conflict resolution for air traffic management: a study in multiagent hybrid systems , 1998, IEEE Trans. Autom. Control..

[4]  Klaus Keimel,et al.  The way-below relation of function spaces over semantic domains , 1998 .

[5]  Klaus Weihrauch,et al.  Computable Analysis , 2005, CiE.

[6]  Thomas A. Henzinger,et al.  HYTECH: a model checker for hybrid systems , 1997, International Journal on Software Tools for Technology Transfer.

[7]  T. Henzinger,et al.  Algorithmic Analysis of Nonlinear Hybrid Systems , 1998, CAV.

[8]  Abbas Edalat,et al.  Domain theory and differential calculus (functions of one variable) , 2004, Math. Struct. Comput. Sci..

[9]  E. Coddington,et al.  Theory of Ordinary Differential Equations , 1955 .

[10]  T. Morrison,et al.  Dynamical Systems , 2021, Nature.

[11]  Abbas Edalat,et al.  Domain theory and differential calculus (functions of one variable) , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.

[12]  Abbas Edalat,et al.  A Domain Theoretic Account of Euler's Method for Solving Initial Value Problems , 2004, PARA.

[13]  Abbas Edalat,et al.  A Domain-Theoretic Account of Picard's Theorem , 2007 .

[14]  Jean-Pierre Aubin,et al.  Viability theory , 1991 .

[15]  John Lygeros,et al.  Verified hybrid controllers for automated vehicles , 1998, IEEE Trans. Autom. Control..

[16]  Thomas A. Henzinger,et al.  Automatic symbolic verification of embedded systems , 1993, 1993 Proceedings Real-Time Systems Symposium.

[17]  Pravin Varaiya,et al.  Smart cars on smart roads: problems of control , 1991, IEEE Trans. Autom. Control..

[18]  Thomas Stauner,et al.  Modelling and Verification using Linear Hybrid Automata -- a Case Study , 2000 .

[19]  Klaus Weihrauch,et al.  Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.

[20]  J. Czipszer,et al.  Extension of functions satisfying a Lipschitz condition , 1955 .

[21]  Thomas A. Henzinger,et al.  The Algorithmic Analysis of Hybrid Systems , 1995, Theor. Comput. Sci..

[22]  Abbas Edalat,et al.  Dynamical Systems, Measures and Fractals via Domain Theory , 1993, Inf. Comput..

[23]  Abbas Edalat,et al.  Power Domains and Iterated Function Systems , 1996, Inf. Comput..

[24]  Samson Abramsky,et al.  Domain theory , 1995, LICS 1995.

[25]  Abbas Edalat,et al.  Domain-theoretic Solution of Differential Equations (Scalar Fields) , 2003, MFPS.

[26]  Karl Henrik Johansson,et al.  Towards a Geometric Theory of Hybrid Systems , 2000, HSCC.

[27]  Abbas Edalat,et al.  Domain Theoretic Solutions of Initial Value Problems for Unbounded Vector Fields , 2006, MFPS.

[28]  Thomas A. Henzinger,et al.  The theory of hybrid automata , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.