The Holonomic Ansatz II. Automatic Discovery(!) And Proof(!!) of Holonomic Determinant Evaluations
暂无分享,去创建一个
[1] C. Krattenthaler. Advanced Determinant Calculus: A Complement , 2005, math/0503507.
[2] C. Krattenthaler. ADVANCED DETERMINANT CALCULUS , 1999, math/9902004.
[3] Doron Zeilberger,et al. A fast algorithm for proving terminating hypergeometric identities , 1990, Discret. Math..
[4] David P. Robbins,et al. Enumeration of a symmetry class of plane partitions , 1987, Discret. Math..
[5] Frédéric Chyzak,et al. An extension of Zeilberger's fast algorithm to general holonomic functions , 2000, Discret. Math..
[6] Doron Zeilberger,et al. The Method of Creative Telescoping , 1991, J. Symb. Comput..
[8] Marko Petkovsek,et al. A high-tech proof of the Mills-Robbins-Rumsey determinant formula , 1995, Electron. J. Comb..
[9] Doron Zeilberger,et al. Theorems for a price: tomorrow’s semi-rigorous mathematical culture , 1993 .
[10] W. H. Mills,et al. Proof of the Macdonald conjecture , 1982 .
[11] D. Zeilberger. A holonomic systems approach to special functions identities , 1990 .
[12] Bruno Salvy,et al. GFUN: a Maple package for the manipulation of generating and holonomic functions in one variable , 1994, TOMS.
[13] George E. Andrews,et al. Determinants in Plane Partition Enumeration , 1998, Eur. J. Comb..