Experimental study on acceleration of an exact-arithmetic geometric algorithm
暂无分享,去创建一个
[1] David P. Dobkin,et al. Recipes for geometry and numerical analysis - Part I: an empirical study , 1988, SCG '88.
[2] M. Iri,et al. Construction of the Voronoi diagram for 'one million' generators in single-precision arithmetic , 1992, Proc. IEEE.
[3] Herbert Edelsbrunner,et al. Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.
[4] B. Peroche,et al. Error-free boundary evaluation using lazy rational arithmetic: a detailed implementation , 1993, Solid Modeling and Applications.
[5] Carlo H. Séquin,et al. Consistent calculations for solids modeling , 1985, SCG '85.
[6] Kokichi Sugihara. A Robust and Consistent Algorithm for Intersecting Convex Polyhedra , 1994, Comput. Graph. Forum.
[7] Michael Ian Shamos,et al. Computational geometry: an introduction , 1985 .
[8] Peter Schorn. Robust algorithms in a program library for geometric computation , 1991, Informatik-Dissertationen ETH Zürich.
[9] Chee-Keng Yap,et al. A geometric consistency theorem for a symbolic perturbation scheme , 1988, SCG '88.
[10] Christopher J. Van Wyk,et al. Efficient exact arithmetic for computational geometry , 1993, SCG '93.
[11] Chee Yap. Symbolic treatment of geometric degeneracies: Proceedings of the International IFIPS Conference on System Modeling and Optimization. Tokyo, 1987 , 1987 .
[12] Franz Aurenhammer,et al. Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..
[13] Kokichi Sugihara. Approximation of Generalized Voronoi Diagrams by Ordinary Voronoi Diagrams , 1993, CVGIP Graph. Model. Image Process..
[14] Christoph M. Hoffmann,et al. The problems of accuracy and robustness in geometric computation , 1989, Computer.
[15] Kokichi Sugihara,et al. A solid modelling system free from topological inconsistency , 1990 .
[16] Thomas Ottmann,et al. Numerical stability of geometric algorithms , 1987, SCG '87.
[17] Donald E. Knuth,et al. Axioms and Hulls , 1992, Lecture Notes in Computer Science.
[18] M HoffmannChristoph. The Problems of Accuracy and Robustness in Geometric Computation , 1989 .
[19] Donald R. Chand,et al. An Algorithm for Convex Polytopes , 1970, JACM.
[20] Victor J. Milenkovic,et al. Verifiable Implementations of Geometric Algorithms Using Finite Precision Arithmetic , 1989, Artif. Intell..
[21] Lee R. Nackman,et al. Efficient Delaunay triangulation using rational arithmetic , 1991, TOGS.
[22] Atsuyuki Okabe,et al. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.
[23] Chee-Keng Yap,et al. Towards Exact Geometric Computation , 1997, Comput. Geom..
[24] Hiroshi Imai,et al. Voronoi Diagram in the Laguerre Geometry and its Applications , 1985, SIAM J. Comput..
[25] Christoph M. Hoffmann,et al. Geometric and Solid Modeling: An Introduction , 1989 .