Statistical Estimates for the Conditioning of Linear Least Squares Problems

In this paper we are interested in computing linear least squares (LLS) condition numbers to measure the numerical sensitivity of an LLS solution to perturbations in data. We propose a statistical estimate for the normwise condition number of an LLS solution where perturbations on data are mesured using the Frobenius norm for matrices and the Euclidean norm for vectors. We also explain how condition numbers for the components of an LLS solution can be computed. We present numerical experiments that compare the statistical condition estimates with their corresponding exact values.

[1]  Jack J. Dongarra,et al.  Towards dense linear algebra for hybrid GPU accelerated manycore systems , 2009, Parallel Comput..

[2]  J. Navarro-Pedreño Numerical Methods for Least Squares Problems , 1996 .

[3]  James Hardy Wilkinson,et al.  Rounding errors in algebraic processes , 1964, IFIP Congress.

[4]  N. Higham A Survey of Componentwise Perturbation Theory in Numerical Linear Algebra , 1994 .

[5]  Mei Han An,et al.  accuracy and stability of numerical algorithms , 1991 .

[6]  Serge Gratton,et al.  A Contribution to the Conditioning of the Total Least-Squares Problem , 2010, SIAM J. Matrix Anal. Appl..

[7]  Alan J. Laub,et al.  Small-Sample Statistical Estimates for Matrix Norms , 1995, SIAM J. Matrix Anal. Appl..

[8]  S. Gratton,et al.  Parallel Tools for Solving Incremental Dense Least Squares Problems: Application to Space Geodesy , 2009 .

[9]  P. Wedin Perturbation theory for pseudo-inverses , 1973 .

[10]  A. J. Geurts,et al.  A contribution to the theory of condition , 1982 .

[11]  L. Eldén Perturbation Theory for the Least Squares Problem with Linear Equality Constraints , 1980 .

[12]  J. Rice A Theory of Condition , 1966 .

[13]  Serge Gratton,et al.  A Partial Condition Number for Linear Least Squares Problems , 2007, SIAM J. Matrix Anal. Appl..

[14]  Linda R. Petzold,et al.  A Subspace Error Estimate for Linear Systems , 2003, SIAM J. Matrix Anal. Appl..

[15]  Ji-Guang Sun,et al.  Optimal backward perturbation bounds for the linear least squares problem , 1995, Numer. Linear Algebra Appl..

[16]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[17]  Serge Gratton,et al.  On the condition number of linear least squares problems in a weighted Frobenius norm , 1996 .

[18]  Alan J. Laub,et al.  Small-Sample Statistical Condition Estimates for General Matrix Functions , 1994, SIAM J. Sci. Comput..

[19]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[20]  Serge Gratton,et al.  Using dual techniques to derive componentwise and mixed condition numbers for a linear function of a linear least squares solution , 2009 .

[21]  Jack Dongarra,et al.  LAPACK Users' Guide, 3rd ed. , 1999 .

[22]  A. Laub,et al.  Statistical Condition Estimation for Linear Least Squares , 1998, SIAM J. Matrix Anal. Appl..

[23]  Gene H. Golub,et al.  Matrix computations , 1983 .

[24]  J. H. Wilkinson,et al.  Note on the iterative refinement of least squares solution , 1966 .

[25]  Julien Langou,et al.  Computing the conditioning of the components of a linear least-squares solution , 2009, Numer. Linear Algebra Appl..

[26]  Yimin Wei,et al.  On mixed and componentwise condition numbers for Moore-Penrose inverse and linear least squares problems , 2006, Math. Comput..

[27]  Ilse C. F. Ipsen,et al.  On the Sensitivity of Solution Components in Linear Systems of Equations , 1995, SIAM J. Matrix Anal. Appl..