Computing multiple Lyapunov-like functions for inner estimates of domains of attraction of switched hybrid systems: Computing multiple Lyapunov-like functions for inner estimates of domains of attraction of switched hybrid systems

[1]  Mathukumalli Vidyasagar,et al.  Maximal lyapunov functions and domains of attraction for autonomous nonlinear systems , 1981, Autom..

[2]  Amir Ali Ahmadi,et al.  Non-monotonic Lyapunov functions for stability of discrete time nonlinear and switched systems , 2008, 2008 47th IEEE Conference on Decision and Control.

[3]  Jong-Shi Pang,et al.  Linear Complementarity Systems: Zeno States , 2005, SIAM J. Control. Optim..

[4]  M. Kanat Camlibel,et al.  Conewise Linear Systems: Non-Zenoness and Observability , 2006, SIAM J. Control. Optim..

[5]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[6]  J. Thorp,et al.  Stability regions of nonlinear dynamical systems: a constructive methodology , 1989 .

[7]  Daniel Coutinho,et al.  Local stability analysis and domain of attraction estimation for a class of uncertain nonlinear discrete‐time systems , 2013 .

[8]  Corentin Briat,et al.  Affine Characterizations of Minimal and Mode-Dependent Dwell-Times for Uncertain Linear Switched Systems , 2012, IEEE Transactions on Automatic Control.

[9]  Zhikun She,et al.  Inner approximations of domains of attraction for a class of switched systems by computing Lyapunov‐like functions , 2018 .

[10]  C. Kellett,et al.  COMPUTATION OF LYAPUNOV FUNCTIONS FOR SYSTEMS WITH MULTIPLE LOCAL ATTRACTORS , 2015 .

[11]  Matthew M. Peet,et al.  Estimating the region of attraction using polynomial optimization: A converse Lyapunov result , 2017, 2017 IEEE 56th Annual Conference on Decision and Control (CDC).

[12]  Matthias Althoff,et al.  Estimating the domain of attraction based on the invariance principle , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[13]  Lei Wang,et al.  General Lyapunov Functions for Consensus of Nonlinear Multiagent Systems , 2017, IEEE Transactions on Circuits and Systems II: Express Briefs.

[14]  Daniel W. C. Ho,et al.  Distributed edge event‐triggered consensus protocol of multi‐agent systems with communication buffer , 2017 .

[15]  V. Utkin Variable structure systems with sliding modes , 1977 .

[16]  Colin Neil Jones,et al.  Convex Computation of the Maximum Controlled Invariant Set For Polynomial Control Systems , 2013, SIAM J. Control. Optim..

[17]  Pablo A. Parrilo,et al.  Semidefinite Programming Relaxations and Algebraic Optimization in Control , 2003, Eur. J. Control.

[18]  Gábor Szederkényi,et al.  Determining the domain of attraction of hybrid non-linear systems using maximal Lyapunov functions , 2010, Kybernetika.

[19]  Didier Henrion,et al.  Convex Computation of the Region of Attraction of Polynomial Control Systems , 2012, IEEE Transactions on Automatic Control.

[20]  Weiming Xiang Necessary and Sufficient Condition for Stability of Switched Uncertain Linear Systems Under Dwell-Time Constraint , 2016, IEEE Transactions on Automatic Control.

[21]  Francesco Amato,et al.  An insight into tumor dormancy equilibrium via the analysis of its domain of attraction , 2008, Biomed. Signal Process. Control..

[22]  Hai Lin,et al.  Stability and Stabilizability of Switched Linear Systems: A Survey of Recent Results , 2009, IEEE Transactions on Automatic Control.

[23]  Jamal Daafouz,et al.  Stability analysis and control synthesis for switched systems: a switched Lyapunov function approach , 2002, IEEE Trans. Autom. Control..

[24]  Bai Xue,et al.  Computing an invariance kernel with target by computing Lyapunov-like functions , 2013 .

[25]  Graziano Chesi,et al.  Guaranteed estimates of the domain of attraction for a class of hybrid systems , 2013, 52nd IEEE Conference on Decision and Control.

[26]  Yiguang Hong,et al.  Semi‐global cooperative output regulation of a class of nonlinear uncertain multi‐agent systems under switching networks , 2017 .

[27]  Robert Shorten,et al.  Stability Criteria for Switched and Hybrid Systems , 2007, SIAM Rev..

[28]  Pablo A. Parrilo,et al.  Introducing SOSTOOLS: a general purpose sum of squares programming solver , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[29]  S. Zhong,et al.  Asymptotic stability in probability of singular stochastic systems with Markovian switchings , 2017 .

[30]  Bai Xue,et al.  Discovering Multiple Lyapunov Functions for Switched Hybrid Systems , 2014, SIAM J. Control. Optim..

[31]  Zhikun She,et al.  Inner-approximations of domains of attraction for discrete-time switched systems with arbitrary switching , 2017, 2017 IEEE 56th Annual Conference on Decision and Control (CDC).

[32]  Sanjay Lall,et al.  Polynomial level-set method for attractor estimation , 2012, J. Frankl. Inst..

[33]  Eric Blanco,et al.  A Polynomial Approach to Robust Estimation of Uncertain Discrete-Time Systems , 2015, IEEE Transactions on Automatic Control.

[35]  Andrew Packard,et al.  Stability Region Analysis Using Polynomial and Composite Polynomial Lyapunov Functions and Sum-of-Squares Programming , 2008, IEEE Transactions on Automatic Control.

[36]  A. Vicino,et al.  On the estimation of asymptotic stability regions: State of the art and new proposals , 1985 .

[37]  M. Branicky Multiple Lyapunov functions and other analysis tools for switched and hybrid systems , 1998, IEEE Trans. Autom. Control..

[38]  Ufuk Topcu,et al.  Quantitative local analysis of nonlinear systems , 2008 .

[39]  Richard D. Braatz,et al.  Efficient Polynomial-Time Outer Bounds on State Trajectories for Uncertain Polynomial Systems Using Skewed Structured Singular Values , 2014, IEEE Trans. Autom. Control..

[40]  Zhikun She,et al.  Sufficient and necessary conditions for discrete-time nonlinear switched systems with uniform local exponential stability , 2016, Int. J. Syst. Sci..

[41]  Francesco Amato,et al.  Estimation of the domain of attraction for a class of hybrid systems , 2011 .

[42]  J. D. Silva,et al.  Computing estimates of the region of attraction for rational control systems with saturating actuators , 2010 .

[43]  Lei Wang,et al.  Synchronization of heterogeneous linear networks with distinct inner coupling matrices. , 2018, ISA transactions.

[44]  Bai Xue,et al.  Underapproximating Backward Reachable Sets by Semialgebraic Sets , 2017, IEEE Transactions on Automatic Control.

[45]  O. Toker,et al.  On the NP-hardness of solving bilinear matrix inequalities and simultaneous stabilization with static output feedback , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[46]  Karl Henrik Johansson,et al.  Dynamical properties of hybrid automata , 2003, IEEE Trans. Autom. Control..

[47]  Russ Tedrake,et al.  Convex optimization of nonlinear feedback controllers via occupation measures , 2013, Int. J. Robotics Res..

[48]  Shuzhi Sam Ge,et al.  Stability analysis of discrete-time switched systems via Multi-step multiple Lyapunov-like functions , 2018 .

[49]  Jamal Daafouz,et al.  Input independent chaos synchronization of switched systems , 2004, IEEE Transactions on Automatic Control.

[50]  Bertrand Cottenceau,et al.  An algorithm for computing a neighborhood included in the attraction domain of an asymptotically stable point , 2015, Commun. Nonlinear Sci. Numer. Simul..

[51]  Z. Jarvis-Wloszek,et al.  Lyapunov Based Analysis and Controller Synthesis for Polynomial Systems using Sum-of-Squares Optimization , 2003 .

[52]  Graziano Chesi,et al.  Rational Lyapunov functions for estimating and controlling the robust domain of attraction , 2013, Autom..

[53]  Robert Baier,et al.  A computational method for non-convex reachable sets using optimal control , 2009, 2009 European Control Conference (ECC).

[54]  Stefan Ratschan,et al.  Providing a Basin of Attraction to a Target Region of Polynomial Systems by Computation of Lyapunov-Like Functions , 2010, SIAM J. Control. Optim..

[55]  Sanjay Lall,et al.  Polynomial Level-Set Method for Polynomial System Reachable Set Estimation , 2013, IEEE Transactions on Automatic Control.

[56]  Lei Wang,et al.  Characterizations and Criteria for Synchronization of Heterogeneous Networks to Linear Subspaces , 2017, SIAM J. Control. Optim..

[57]  Shuzhi Sam Ge,et al.  Dwell time based stabilisability criteria for discrete-time switched systems , 2017, Int. J. Syst. Sci..

[58]  Jan Lunze,et al.  Handbook of hybrid systems control : theory, tools, applications , 2009 .

[59]  Graziano Chesi,et al.  On the synthesis of output feedback controllers for increasing the domain of attraction of piecewise polynomial systems , 2015, 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE).

[60]  S. Vassilyev,et al.  Analysis of hybrid systems’ dynamics using the common Lyapunov functions and multiple homomorphisms , 2011 .