The links between AKT and two intracellular proteolytic cascades: ubiquitination and autophagy.

The serine threonine kinase AKT plays a central role in the regulation of cell survival in a variety of human neoplastic diseases. A series of studies have revealed a connection between AKT signaling and two important protein degradation pathways in mammalian cells: the ubiquitin-proteasome system and autophagy. Two distinct ubiquitination systems have been reported to regulate AKT signaling: K63-linked ubiquitination, which promotes the oncogenic activation of AKT, and K48-linked ubiquitination, which triggers the proteasomal degradation of phosphorylated AKT. Autophagy is an evolutionarily conserved mechanism for the gross disposal and recycling of intracellular proteins in mammalian cells. AKT signaling may play a regulatory role in autophagy; however, the underlying mechanisms have not been fully clarified. Recently, AKT was shown to phosphorylate key molecules involved in the regulation of autophagy. Furthermore, lysosomal co-localization of the AKT-Phafin2 complex is reportedly critical for the induction of autophagy. In this review, we will discuss the connection between AKT, a core intracellular survival regulator, and two major intracellular proteolytic signaling pathways in mammalian cells.

[1]  S. Maeda,et al.  Dependence of Self-Tolerance on TRAF6-Directed Development of Thymic Stroma , 2005, Science.

[2]  A. Ciechanover,et al.  Narrative Review: Protein Degradation and Human Diseases: The Ubiquitin Connection , 2006, Annals of Internal Medicine.

[3]  M. Hochstrasser,et al.  Evolution and function of ubiquitin-like protein-conjugation systems , 2000, Nature Cell Biology.

[4]  P. Pandolfi,et al.  NEDD4-1 Is a Proto-Oncogenic Ubiquitin Ligase for PTEN , 2007, Cell.

[5]  R. Deberardinis,et al.  Autophagy in metazoans: cell survival in the land of plenty , 2005, Nature Reviews Molecular Cell Biology.

[6]  Xin Lin,et al.  The E3 Ligase TRAF6 Regulates Akt Ubiquitination and Activation , 2009, Science.

[7]  B. Levine,et al.  Autophagy genes in immunity , 2009, Nature Immunology.

[8]  Ramin Massoumi,et al.  Ubiquitin chain cleavage: CYLD at work. , 2010, Trends in biochemical sciences.

[9]  D. Sabatini,et al.  Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. , 2006, Molecular cell.

[10]  C. James,et al.  Akt and Autophagy Cooperate to Promote Survival of Drug-Resistant Glioma , 2010, Science Signaling.

[11]  D. Iliopoulos,et al.  Phosphoproteomics screen reveals akt isoform-specific signals linking RNA processing to lung cancer. , 2014, Molecular cell.

[12]  Lewis C. Cantley,et al.  AKT/PKB Signaling: Navigating Downstream , 2007, Cell.

[13]  P. Tsichlis,et al.  Regulation of the Akt kinase by interacting proteins , 2005, Oncogene.

[14]  R. Mayer,et al.  Ubiquitin and ubiquitin-like proteins as multifunctional signals , 2005, Nature Reviews Molecular Cell Biology.

[15]  Gordon B Mills,et al.  mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. , 2006, Cancer research.

[16]  M. Andjelkovic,et al.  High Affinity Binding of Inositol Phosphates and Phosphoinositides to the Pleckstrin Homology Domain of RAC/Protein Kinase B and Their Influence on Kinase Activity* , 1997, The Journal of Biological Chemistry.

[17]  Junying Yuan,et al.  Autophagy in cell death: an innocent convict? , 2005, The Journal of clinical investigation.

[18]  C. Pickart,et al.  Ubiquitin: structures, functions, mechanisms. , 2004, Biochimica et biophysica acta.

[19]  L. Cantley,et al.  Spatial Control of the TSC Complex Integrates Insulin and Nutrient Regulation of mTORC1 at the Lysosome , 2014, Cell.

[20]  M. Bertrand,et al.  cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. , 2008, Molecular cell.

[21]  Masaaki Komatsu,et al.  Autophagy: Renovation of Cells and Tissues , 2011, Cell.

[22]  A. Sonntag,et al.  A Dynamic Network Model of mTOR Signaling Reveals TSC-Independent mTORC2 Regulation , 2012, Science Signaling.

[23]  Kay Hofmann,et al.  Selective autophagy: ubiquitin-mediated recognition and beyond , 2010, Nature Cell Biology.

[24]  T. P. Neufeld,et al.  ULK1 induces autophagy by phosphorylating Beclin-1 and activating Vps34 lipid kinase , 2013, Nature Cell Biology.

[25]  A. Goldberg,et al.  FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. , 2007, Cell metabolism.

[26]  David P. Davis,et al.  Akt inhibition promotes autophagy and sensitizes PTEN-null tumors to lysosomotropic agents , 2008, The Journal of cell biology.

[27]  V. Longo,et al.  Regulation of Longevity and Stress Resistance by Sch9 in Yeast , 2001, Science.

[28]  R. Deshaies,et al.  Multiubiquitin Chain Receptors Define a Layer of Substrate Selectivity in the Ubiquitin-Proteasome System , 2004, Cell.

[29]  Shao-Cong Sun Deubiquitylation and regulation of the immune response , 2008, Nature Reviews Immunology.

[30]  C. Thompson,et al.  Akt Activation Promotes Degradation of Tuberin and FOXO3a via the Proteasome* , 2003, The Journal of Biological Chemistry.

[31]  Y. Eishi,et al.  Autophagy-deficient mice develop multiple liver tumors. , 2011, Genes & development.

[32]  T. P. Neufeld,et al.  Role and regulation of starvation-induced autophagy in the Drosophila fat body. , 2004, Developmental cell.

[33]  A. Brice,et al.  A regulated interaction with the UIM protein Eps15 implicates parkin in EGF receptor trafficking and PI(3)K–Akt signalling , 2006, Nature Cell Biology.

[34]  Daniel J. Klionsky,et al.  Autophagy: from phenomenology to molecular understanding in less than a decade , 2007, Nature Reviews Molecular Cell Biology.

[35]  T. Kinsella,et al.  Mammalian target of rapamycin and S6 kinase 1 positively regulate 6-thioguanine-induced autophagy. , 2008, Cancer research.

[36]  Brian A. Hemmings,et al.  Crystal structure of an activated Akt/Protein Kinase B ternary complex with GSK3-peptide and AMP-PNP , 2002, Nature Structural Biology.

[37]  C. Sawyers,et al.  The phosphatidylinositol 3-Kinase–AKT pathway in human cancer , 2002, Nature Reviews Cancer.

[38]  David Komander,et al.  Breaking the chains: structure and function of the deubiquitinases , 2009, Nature Reviews Molecular Cell Biology.

[39]  B. Hemmings,et al.  Advances in protein kinase B signalling: AKTion on multiple fronts. , 2004, Trends in biochemical sciences.

[40]  Xinjiang Wang,et al.  Ubiquitin-dependent Regulation of Phospho-AKT Dynamics by the Ubiquitin E3 Ligase, NEDD4-1, in the Insulin-like Growth Factor-1 Response* , 2012, The Journal of Biological Chemistry.

[41]  M. Lemmon,et al.  Structural basis for discrimination of 3-phosphoinositides by pleckstrin homology domains. , 2000, Molecular cell.

[42]  J P Schellens,et al.  The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. , 1997, European journal of biochemistry.

[43]  B. Vanhaesebroeck,et al.  The PI3K-PDK1 connection: more than just a road to PKB. , 2000, The Biochemical journal.

[44]  D. Klionsky The molecular machinery of autophagy: unanswered questions , 2005, Journal of Cell Science.

[45]  P. Codogno,et al.  Distinct Classes of Phosphatidylinositol 3′-Kinases Are Involved in Signaling Pathways That Control Macroautophagy in HT-29 Cells* , 2000, The Journal of Biological Chemistry.

[46]  C. Heldin,et al.  The type I TGF-β receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner , 2008, Nature Cell Biology.

[47]  M. Hochstrasser,et al.  Origin and function of ubiquitin-like proteins , 2009, Nature.

[48]  L. Turka,et al.  TRAF6 is a T cell–intrinsic negative regulator required for the maintenance of immune homeostasis , 2006, Nature Medicine.

[49]  Y. Gotoh,et al.  Scaffolding function of PAK in the PDK1–Akt pathway , 2008, Nature Cell Biology.

[50]  S. Scholl,et al.  The E3 ubiquitin ligase TRAF6 inhibits LPS-induced AKT activation in FLT3-ITD-positive MV4-11 AML cells , 2013, Journal of Cancer Research and Clinical Oncology.

[51]  Matt Kaeberlein,et al.  Regulation of Yeast Replicative Life Span by TOR and Sch9 in Response to Nutrients , 2005, Science.

[52]  K. Liestøl,et al.  The PtdIns3P‐Binding Protein Phafin 2 Mediates Epidermal Growth Factor Receptor Degradation by Promoting Endosome Fusion , 2012, Traffic.

[53]  H. Virgin,et al.  Autophagy in immunity and inflammation , 2011, Nature.

[54]  N. Rosen,et al.  Akt Forms an Intracellular Complex with Heat Shock Protein 90 (Hsp90) and Cdc37 and Is Destabilized by Inhibitors of Hsp90 Function* , 2002, The Journal of Biological Chemistry.

[55]  Markus R. Wenk,et al.  Dual Role of 3-Methyladenine in Modulation of Autophagy via Different Temporal Patterns of Inhibition on Class I and III Phosphoinositide 3-Kinase* , 2010, The Journal of Biological Chemistry.

[56]  A. Newton,et al.  The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C , 2008, The EMBO journal.

[57]  Daniel J. Klionsky,et al.  Autophagy fights disease through cellular self-digestion , 2008, Nature.

[58]  T. Hunter The age of crosstalk: phosphorylation, ubiquitination, and beyond. , 2007, Molecular cell.

[59]  N. C. Price,et al.  Binding of phosphatidylinositol 3,4,5-trisphosphate to the pleckstrin homology domain of protein kinase B induces a conformational change. , 2003, The Biochemical journal.

[60]  Lewis C Cantley,et al.  The phosphoinositide 3-kinase pathway. , 2002, Science.

[61]  T. Ludwig,et al.  Negative Regulation of AKT Activation by BRCA1. , 2008, Cancer research.

[62]  B. Ciruna,et al.  Nedd4‐1 binds and ubiquitylates activated FGFR1 to control its endocytosis and function , 2011, The EMBO journal.

[63]  L. Petrucelli,et al.  Akt and CHIP coregulate tau degradation through coordinated interactions , 2008, Proceedings of the National Academy of Sciences.

[64]  A. Goldberg,et al.  FoxO3 controls autophagy in skeletal muscle in vivo. , 2007, Cell metabolism.

[65]  Howard Riezman,et al.  Proteasome-Independent Functions of Ubiquitin in Endocytosis and Signaling , 2007, Science.

[66]  M. Hall,et al.  TOR Signaling in Growth and Metabolism , 2006, Cell.

[67]  Zhijian J. Chen,et al.  Activation of the IκB Kinase Complex by TRAF6 Requires a Dimeric Ubiquitin-Conjugating Enzyme Complex and a Unique Polyubiquitin Chain , 2000, Cell.

[68]  M. Hochstrasser,et al.  Modification of proteins by ubiquitin and ubiquitin-like proteins. , 2006, Annual review of cell and developmental biology.

[69]  Qing Jun Wang,et al.  Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1–phosphatidylinositol-3-kinase complex , 2009, Nature Cell Biology.

[70]  N. Mizushima,et al.  Methods in Mammalian Autophagy Research , 2010, Cell.

[71]  René Bernards,et al.  A Genomic and Functional Inventory of Deubiquitinating Enzymes , 2005, Cell.

[72]  R. Burke,et al.  Akt Suppresses Retrograde Degeneration of Dopaminergic Axons by Inhibition of Macroautophagy , 2011, The Journal of Neuroscience.

[73]  N. Nukina,et al.  Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. , 2011, Molecular cell.

[74]  Michael Chinkers,et al.  Overlapping Sites of Tetratricopeptide Repeat Protein Binding and Chaperone Activity in Heat Shock Protein 90* , 2000, The Journal of Biological Chemistry.

[75]  M. Stern,et al.  Structural Basis for the Co-activation of Protein Kinase B by T-cell Leukemia-1 (TCL1) Family Proto-oncoproteins* , 2004, Journal of Biological Chemistry.

[76]  A. Thorburn,et al.  Selective inactivation of a Fas-associated death domain protein (FADD)-dependent apoptosis and autophagy pathway in immortal epithelial cells. , 2005, Molecular biology of the cell.

[77]  Wei Chen,et al.  The Lysosome-associated Apoptosis-inducing Protein Containing the Pleckstrin Homology (PH) and FYVE Domains (LAPF), Representative of a Novel Family of PH and FYVE Domain-containing Proteins, Induces Caspase-independent Apoptosis via the Lysosomal-Mitochondrial Pathway* , 2005, Journal of Biological Chemistry.

[78]  Michael D. Schneider,et al.  Bcl-2 Antiapoptotic Proteins Inhibit Beclin 1-Dependent Autophagy , 2005, Cell.

[79]  Jia Hu,et al.  Oncogene homologue Sch9 promotes age-dependent mutations by a superoxide and Rev1/Polζ-dependent mechanism , 2009, The Journal of cell biology.

[80]  D. Klionsky,et al.  Regulation mechanisms and signaling pathways of autophagy. , 2009, Annual review of genetics.

[81]  D. Tindall,et al.  Regulation of FOXO protein stability via ubiquitination and proteasome degradation. , 2011, Biochimica et biophysica acta.

[82]  Su-Jae Lee,et al.  Akt is negatively regulated by the MULAN E3 ligase , 2012, Cell Research.

[83]  M. Eisenstein,et al.  The autophagy protein Atg12 associates with antiapoptotic Bcl-2 family members to promote mitochondrial apoptosis. , 2011, Molecular cell.

[84]  C. Roumestand,et al.  Proto‐oncogene TCL1: more than just a coactivator for Akt , 2007, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[85]  N. Grishin,et al.  EGFR-Mediated Beclin 1 Phosphorylation in Autophagy Suppression, Tumor Progression, and Tumor Chemoresistance , 2013, Cell.

[86]  Jeffrey P. MacKeigan,et al.  Bidirectional Transport of Amino Acids Regulates mTOR and Autophagy , 2009, Cell.

[87]  H. Stenmark,et al.  Regulation of membrane traffic by phosphoinositide 3-kinases , 2006, Journal of Cell Science.

[88]  Chi Li,et al.  Growth Factor Regulation of Autophagy and Cell Survival in the Absence of Apoptosis , 2005, Cell.

[89]  T. Iwanaga,et al.  Lysosomal Interaction of Akt with Phafin2: A Critical Step in the Induction of Autophagy , 2014, PloS one.

[90]  M. Galindo,et al.  Phosphorylation of AKT/PKB by CK2 is necessary for the AKT‐dependent up‐regulation of β‐catenin transcriptional activity , 2011, Journal of cellular physiology.

[91]  M. Diaz-Meco,et al.  p62 at the Crossroads of Autophagy, Apoptosis, and Cancer , 2009, Cell.

[92]  Takeshi Noda,et al.  Tor, a Phosphatidylinositol Kinase Homologue, Controls Autophagy in Yeast* , 1998, The Journal of Biological Chemistry.

[93]  F. Khuri,et al.  Enhancing mammalian target of rapamycin (mTOR)-targeted cancer therapy by preventing mTOR/raptor inhibition-initiated, mTOR/rictor-independent Akt activation. , 2008, Cancer research.

[94]  A. Kimchi,et al.  Autophagy as a cell death and tumor suppressor mechanism , 2004, Oncogene.

[95]  J. Backer,et al.  Regulation of class III (Vps34) PI3Ks. , 2007, Biochemical Society transactions.

[96]  Keith D Wilkinson,et al.  Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. , 2009, Annual review of biochemistry.

[97]  P. Codogno,et al.  Regulation and role of autophagy in mammalian cells. , 2004, The international journal of biochemistry & cell biology.

[98]  M. Greenberg,et al.  Akt Promotes Cell Survival by Phosphorylating and Inhibiting a Forkhead Transcription Factor , 1999, Cell.

[99]  J. Backer,et al.  Regulation of class IA PI3Ks. , 2007, Biochemical Society transactions.

[100]  Toshiyuki Obata,et al.  The E3 ligase TTC3 facilitates ubiquitination and degradation of phosphorylated Akt. , 2009, Developmental cell.

[101]  V. Zinzalla,et al.  Activation of mTORC2 by Association with the Ribosome , 2011, Cell.

[102]  M. Kirschner,et al.  Profiling of Ubiquitin-like Modifications Reveals Features of Mitotic Control , 2013, Cell.

[103]  Michael B. Yaffe,et al.  RNF8 Transduces the DNA-Damage Signal via Histone Ubiquitylation and Checkpoint Protein Assembly , 2007, Cell.

[104]  G. Kroemer,et al.  Autophagic cell death: the story of a misnomer , 2008, Nature Reviews Molecular Cell Biology.

[105]  A. Meijer,et al.  Phosphorylation of Ribosomal Protein S6 Is Inhibitory for Autophagy in Isolated Rat Hepatocytes (*) , 1995, The Journal of Biological Chemistry.

[106]  Jayanta Debnath,et al.  Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is required for induction of autophagy during lumen formation in vitro. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[107]  J. Hazle,et al.  The Skp2-SCF E3 Ligase Regulates Akt Ubiquitination, Glycolysis, Herceptin Sensitivity, and Tumorigenesis , 2012, Cell.

[108]  K. Helin,et al.  The Ubiquitin Ligase HectH9 Regulates Transcriptional Activation by Myc and Is Essential for Tumor Cell Proliferation , 2005, Cell.

[109]  J. Backer The regulation and function of Class III PI3Ks: novel roles for Vps34. , 2008, The Biochemical journal.

[110]  W. Zong,et al.  Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function , 2012, Proceedings of the National Academy of Sciences.

[111]  D. James,et al.  The serine/threonine kinase ULK1 is a target of multiple phosphorylation events. , 2011, The Biochemical journal.

[112]  M. Pasparakis,et al.  K63 polyubiquitination and activation of mTOR by the p62-TRAF6 complex in nutrient-activated cells. , 2013, Molecular cell.

[113]  W. Gu,et al.  Cycles of Ubiquitination and Deubiquitination Critically Regulate Growth Factor–Mediated Activation of Akt Signaling , 2013, Science Signaling.

[114]  R A Knight,et al.  Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009 , 2005, Cell Death and Differentiation.

[115]  D. Alessi,et al.  Specific binding of the Akt-1 protein kinase to phosphatidylinositol 3,4,5-trisphosphate without subsequent activation. , 1996, The Biochemical journal.

[116]  M. Rapé,et al.  The Ubiquitin Code , 2012, Annual review of biochemistry.

[117]  S. Arico,et al.  The Tumor Suppressor PTEN Positively Regulates Macroautophagy by Inhibiting the Phosphatidylinositol 3-Kinase/Protein Kinase B Pathway* , 2001, The Journal of Biological Chemistry.

[118]  M. Warr,et al.  FoxO3a Directs a Protective Autophagy Program in Hematopoietic Stem Cells , 2013, Nature.

[119]  E. Jung,et al.  TRAF6 deficiency promotes TNF-induced cell death through inactivation of GSK3β , 2008, Cell Death and Differentiation.

[120]  Ji Luo,et al.  The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism , 2006, Nature Reviews Genetics.

[121]  T. P. Neufeld,et al.  The class III PI(3)K Vps34 promotes autophagy and endocytosis but not TOR signaling in Drosophila , 2008, The Journal of cell biology.

[122]  M. Lindsay,et al.  Localization of phosphatidylinositol 3‐phosphate in yeast and mammalian cells , 2000, The EMBO journal.

[123]  D. Green,et al.  Mitochondria and the Autophagy–Inflammation–Cell Death Axis in Organismal Aging , 2011, Science.

[124]  Rong-Gang Li,et al.  Akt SUMOylation regulates cell proliferation and tumorigenesis. , 2013, Cancer research.

[125]  M. McNutt,et al.  Autophagy induced by suberoylanilide hydroxamic acid in Hela S3 cells involves inhibition of protein kinase B and up-regulation of Beclin 1. , 2008, The international journal of biochemistry & cell biology.

[126]  G. Mills,et al.  Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. , 2005, Cancer research.

[127]  G. Bhagat,et al.  Akt-Mediated Regulation of Autophagy and Tumorigenesis Through Beclin 1 Phosphorylation , 2012, Science.

[128]  D. Sabatini,et al.  mTOR: from growth signal integration to cancer, diabetes and ageing , 2010, Nature Reviews Molecular Cell Biology.