Coulumb Fluid, Painlevé Transcendents, and the Information Theory of MIMO Systems

In this paper, we compute two important information-theoretic quantities which arise in the application of multiple-input multiple-output (MIMO) antenna wireless communication systems: the distribution of the mutual information of multiantenna Gaussian channels, and the Gallager random coding upper bound on the error probability achievable by finite-length channel codes. We show that the mathematical problem underpinning both quantities is the computation of certain Hankel determinants generated by deformed versions of classical weight functions. For single-user MIMO systems, it is a deformed Laguerre weight; for multiuser MIMO systems, it is a deformed Jacobi weight. We apply two different methods to characterize each of these Hankel determinants. First, we employ the ladder operators of the corresponding monic rthogonal polynomials to give an exact characterization of the Hankel determinants in terms of Painlevé differential equations. This turns out to be a Painlevé V for the single-user MIMO scenario and a Painlevé VI for the multiuser scenario. We then introduce Coulomb fluid linear statistics methods to derive closed-form approximations for the MIMO mutual information distribution and the error probability which, although formally valid for large matrix dimensions, are shown to give accurate results even when the matrix dimensions are small. Focusing on the single-user mutual information distribution, we then employ the exact Painlevé V representation with the help of the Coulomb fluid linear statistics approximation to yield deeper insights into the scaling behavior in terms of the number of antennas and signal-to-noise ratio (SNR). Among other things, these results allow us to study the asymptotic Gaussianity of the distribution as the number of antennas increase, and to investigate when and why such approximations break down as the SNR increases. Based on the Painlevé, we also derive recursive formulas for explicitly computing in closed form any desired number of correction terms to the asymptotic mean and variance, as well as closed-form asymptotic expressions for any desired number of higher order cumulants. Using these cumulants, we propose new closed-form approximations to the mutual information distribution which are shown to be very accurate, not only in the bulk but also in the tail region of interest for the outage probability.

[1]  Craig A. Tracy,et al.  Mathematical Physics © Springer-Verlag 1994 Level Spacing Distributions and the Bessel Kernel , 1993 .

[2]  François Chapeau-Blondeau,et al.  Numerical evaluation of the Lambert W function and application to generation of generalized Gaussian noise with exponent 1/2 , 2002, IEEE Trans. Signal Process..

[3]  Hyundong Shin,et al.  Capacity of multiple-antenna fading channels: spatial fading correlation, double scattering, and keyhole , 2003, IEEE Trans. Inf. Theory.

[4]  Yang Chen,et al.  Ladder operators and differential equations for orthogonal polynomials , 1997 .

[5]  Y Chen,et al.  Some eigenvalue distribution functions of the Laguerre ensemble , 1996 .

[6]  Xavier Mestre,et al.  Capacity of MIMO channels: asymptotic evaluation under correlated fading , 2003, IEEE J. Sel. Areas Commun..

[7]  D. Clark,et al.  Estimates of the orthogonal polynomials with weight exp(-x m ), m an even positive integer , 1986 .

[8]  Z. Bai,et al.  CLT for linear spectral statistics of large dimensional sample covariance matrices with dependent data , 2017, Statistical Papers.

[9]  Mohamed-Slim Alouini,et al.  Outage probability and spectrum efficiency of cellular mobile radio systems with smart antennas , 2002, IEEE Trans. Commun..

[10]  J. Bernstein,et al.  Particles, Sources and Fields , 1971 .

[11]  Alex J. Grant,et al.  Rayleigh Fading Multi-Antenna Channels , 2002, EURASIP J. Adv. Signal Process..

[12]  S. Blinnikov,et al.  Expansions for nearly Gaussian distributions , 1997 .

[13]  V. Osipov,et al.  Correlations of RMT characteristic polynomials and integrability: Hermitean matrices , 2010, 1003.0757.

[14]  Antonia Maria Tulino,et al.  Random Matrix Theory and Wireless Communications , 2004, Found. Trends Commun. Inf. Theory.

[15]  H. Widom Toeplitz Determinants with Singular Generating Functions , 1973 .

[16]  Yang Chen,et al.  Painlevé IV and degenerate Gaussian unitary ensembles , 2006 .

[17]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[18]  P. J. Forrester,et al.  Application of the τ-function theory of Painlevé equations to random matrices: PV, PIII, the LUE, JUE, and CUE , 2002 .

[19]  Yang Chen,et al.  Painlevé VI and the Unitary Jacobi Ensembles , 2009, 0911.5636.

[20]  Shlomo Shamai,et al.  Spectral Efficiency of CDMA with Random Spreading , 1999, IEEE Trans. Inf. Theory.

[21]  Antonia Maria Tulino,et al.  Capacity of multiple-transmit multiple-receive antenna architectures , 2002, IEEE Trans. Inf. Theory.

[22]  Freeman J. Dyson,et al.  DISTRIBUTION OF EIGENVALUES FOR A CLASS OF REAL SYMMETRIC MATRICES. , 1971 .

[23]  A. Ronveaux,et al.  Laguerre-Freud's equations for the recurrence coefficients of semi-classical orthogonal polynomials , 1994 .

[24]  Alphonse P. Magnus,et al.  Painleve´-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials , 1995 .

[25]  Masatsugu Tsuji,et al.  Potential theory in modern function theory , 1959 .

[26]  Solomon G. Mikhlin,et al.  Integral Equations: And Their Applications to Certain Problems in Mechanics, Mathematical Physics and Technology , 2014 .

[27]  Jeffrey G. Andrews,et al.  Overcoming interference in spatial multiplexing MIMO cellular networks , 2007, IEEE Wireless Communications.

[28]  P. J. Forrester,et al.  Application of the τ-Function Theory¶of Painlevé Equations to Random Matrices:¶PIV, PII and the GUE , 2001, math-ph/0103025.

[29]  Emre Telatar,et al.  Capacity of Multi-antenna Gaussian Channels , 1999, Eur. Trans. Telecommun..

[30]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[31]  W. Hachem,et al.  Deterministic equivalents for certain functionals of large random matrices , 2005, math/0507172.

[32]  Ke Liu,et al.  Capacity scaling and spectral efficiency in wide-band correlated MIMO channels , 2003, IEEE Trans. Inf. Theory.

[33]  Moe Z. Win,et al.  On the capacity of spatially correlated MIMO Rayleigh-fading channels , 2003, IEEE Trans. Inf. Theory.

[34]  Mohamed-Slim Alouini,et al.  Capacity of MIMO Rician channels with multiple correlated Rayleigh co-channel interferers , 2003, GLOBECOM '03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489).

[35]  Yang Chen,et al.  Painlevé III and a singular linear statistics in Hermitian random matrix ensembles, I , 2008, J. Approx. Theory.

[36]  Lizhong Zheng,et al.  Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels , 2003, IEEE Trans. Inf. Theory.

[37]  Harold Widom,et al.  On the Relation Between Orthogonal, Symplectic and Unitary Matrix Ensembles , 1999 .

[38]  Matthew R. McKay,et al.  General capacity bounds for spatially correlated Rician MIMO channels , 2005, IEEE Transactions on Information Theory.

[39]  Oriol Bohigas,et al.  Distributions of conductance and shot noise and associated phase transitions. , 2008, Physical review letters.

[40]  Matthew R. McKay,et al.  On the Mutual Information Distribution of OFDM-Based Spatial Multiplexing: Exact Variance and Outage Approximation , 2007, IEEE Transactions on Information Theory.

[41]  Aris L. Moustakas,et al.  Capacity and Character Expansions: Moment-Generating Function and Other Exact Results for MIMO Correlated Channels , 2005, IEEE Transactions on Information Theory.

[42]  S. Simon,et al.  Crossover from conserving to lossy transport in circular random-matrix ensembles. , 2005, Physical review letters.

[43]  Moe Z. Win,et al.  Error probability for optimum combining of M-ary PSK signals in the presence of interference and noise , 2003, IEEE Trans. Commun..

[44]  Peter J. Forrester,et al.  The Distribution of the first Eigenvalue Spacing at the Hard Edge of the Laguerre Unitary Ensemble , 2007, 0704.1926.

[45]  Philippe Loubaton,et al.  A New Approach for Mutual Information Analysis of Large Dimensional Multi-Antenna Channels , 2008, IEEE Transactions on Information Theory.

[46]  V. Osipov,et al.  Statistics of thermal to shot noise crossover in chaotic cavities , 2009, 0902.3069.

[47]  F. Dyson Statistical Theory of the Energy Levels of Complex Systems. I , 1962 .

[48]  Dan Popescu,et al.  Information capacity of a random signature multiple-input multiple-output channel , 2000, IEEE Trans. Commun..

[49]  D. A. Bell,et al.  Information Theory and Reliable Communication , 1969 .

[50]  S. Majumdar,et al.  Extreme value statistics of eigenvalues of Gaussian random matrices. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  F. Smithies,et al.  Singular Integral Equations , 1955, The Mathematical Gazette.

[52]  S. Majumdar,et al.  Large deviations of the maximum eigenvalue in Wishart random matrices , 2007, cond-mat/0701371.

[53]  Estelle L. Basor,et al.  Asymptotic formulas for Toeplitz determinants , 1978 .

[54]  Yang Chen,et al.  Painlevé V and the distribution function of a discontinuous linear statistic in the Laguerre unitary ensembles , 2008, 0807.4758.

[55]  Lun Zhang,et al.  Painlevé VI and Hankel determinants for the generalized Jacobi weight , 2009, 0908.0558.

[56]  Yang Chen Mourad Ismail Jacobi polynomials from compatibility conditions , 2003 .

[57]  Giuseppe Caire,et al.  Living at the Edge: A Large Deviations Approach to the Outage MIMO Capacity , 2009, IEEE Transactions on Information Theory.

[58]  V. Osipov,et al.  Integrable theory of quantum transport in chaotic cavities. , 2008, Physical review letters.

[59]  辻 正次,et al.  Potential theory in modern function theory , 1959 .

[60]  Yang Chen,et al.  Thermodynamic relations of the Hermitian matrix ensembles , 1997 .

[61]  H. Widom,et al.  Determinants of Hankel Matrices , 2000, math/0006070.

[62]  Yang Chen,et al.  Orthogonal polynomials with discontinuous weights , 2005, math-ph/0501057.

[63]  Mérouane Debbah,et al.  Random Matrix Methods for Wireless Communications: Applications to wireless communications , 2011 .

[64]  Georgios B. Giannakis,et al.  Outage mutual information of space-time MIMO channels , 2004, IEEE Transactions on Information Theory.

[65]  Harold Widom,et al.  Lectures on Integral Equations , 1969 .

[66]  E. Basor,et al.  Perturbed Hankel determinants , 2005, math-ph/0509043.

[67]  William C. Bauldry Estimates of asymmetric Freud polynomials on the real line , 1990 .

[68]  M. J. Gans,et al.  On Limits of Wireless Communications in a Fading Environment when Using Multiple Antennas , 1998, Wirel. Pers. Commun..

[69]  Xiaohu You,et al.  On the Ergodic Capacity of Rank-$1$ Ricean-Fading MIMO Channels , 2007, IEEE Transactions on Information Theory.

[70]  V. Marčenko,et al.  DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .

[71]  Paul Nevai,et al.  Orthogonal polynomials and their derivatives, I , 1984 .

[72]  Antonia Maria Tulino,et al.  Asymptotic outage capacity of multiantenna channels , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[73]  Mohamed-Slim Alouini,et al.  Capacity of MIMO Rician channels , 2006, IEEE Transactions on Wireless Communications.

[74]  Isaac Pérez Castillo,et al.  Large deviations of the smallest eigenvalue of the Wishart-Laguerre ensemble. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[75]  S. M. Manning,et al.  Distribution of linear statistics in random matrix models (metallic conductance fluctuations) , 1994 .

[76]  Craig A. Tracy,et al.  Mathematical Physics © Springer-Verlag 1994 Fredholm Determinants, Differential Equations and Matrix Models , 2022 .

[77]  Hermitian, symmetric and symplectic random ensembles: PDEs for the distribution of the spectrum , 2000, math-ph/0009001.

[78]  Aris L. Moustakas,et al.  MIMO capacity through correlated channels in the presence of correlated interferers and noise: a (not so) large N analysis , 2003, IEEE Trans. Inf. Theory.

[79]  Antonia Maria Tulino,et al.  Impact of antenna correlation on the capacity of multiantenna channels , 2005, IEEE Transactions on Information Theory.

[80]  S. M. Manning,et al.  Asymptotic level spacing of the Laguerre ensemble: a Coulomb fluid approach , 1994 .

[81]  I. N. Sneddon,et al.  Boundary value problems , 2007 .

[82]  J. Nuttall,et al.  Note on generalized jacobi polynomials , 1982 .

[83]  Matthew R. McKay,et al.  Statistical Eigenmode Transmission Over Jointly Correlated MIMO Channels , 2009, IEEE Transactions on Information Theory.

[84]  Yang Chen,et al.  On the linear statistics of Hermitian random matrices , 1998 .

[85]  Mansoor Shafi,et al.  Capacity of MIMO systems with semicorrelated flat fading , 2003, IEEE Trans. Inf. Theory.

[86]  Caijun Zhong,et al.  Ergodic Capacity Analysis of Amplify-and-Forward MIMO Dual-Hop Systems , 2008, IEEE Transactions on Information Theory.

[87]  Doron S. Lubinsky,et al.  Orthogonal polynomials and their derivatives, II , 1987 .

[88]  W. Hackbusch Singular Integral Equations , 1995 .

[89]  D. Clark,et al.  Estimates of the Hermite and the Freud polynomials , 1990 .

[90]  Yang Chen,et al.  Painlevé V and time-dependent Jacobi polynomials , 2009, 0905.2620.