Displacement structure approach to discrete-trigonometric-transform based preconditioners of G.Strang type and of T.Chan type

In this paper adisplacement structure technique is used to design a class of newpreconditioners for theconjugate gradient method applied to the solution of large Toeplitz linear equations. Explicit formulas are suggested for the G.Strang-type and for the T.Chan-type preconditioners belonging to any of 8 classes of matrices diagonalized by the correspondingdiscrete cosine or sine transforms. Under the standard Wiener class assumption theclustering property is established for all of these preconditioners, guaranteeing a rapid convergence of the preconditioned conjugate gradient method. The formulas for the G.Strang-type preconditioners have another important application: they suggest a wide variety of newO(m logm) algorithms for multiplication of a Toeplitz matrix by a vector, based on any of the 8 DCT’s and DST’s. Recentlytransformations of Toeplitz matrices to Vandermonde-like or Cauchy-like matrices have been found to be useful in developing accuratedirect methods for Toeplitz linear equations. Here it is suggested to further extend the range of the transformation approach by exploring it foriterative methods; this technique allowed us to reduce the complexity of each iteration of the preconditioned conjugate gradient method to 4 discrete transforms per iteration.

[1]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[2]  M. Morf,et al.  Displacement ranks of matrices and linear equations , 1979 .

[3]  Dario Bini,et al.  SPECTRAL AND COMPUTATIONAL PROPERTIES OF BAND SYMMETRIC TOEPLITZ MATRICES , 1983 .

[4]  Gene H. Golub,et al.  Matrix computations , 1983 .

[5]  G. Strang A proposal for toeplitz matrix calculations , 1986 .

[6]  T. Chan An Optimal Circulant Preconditioner for Toeplitz Systems , 1988 .

[7]  G. Strang,et al.  Toeplitz equations by conjugate gradients with circulant preconditioner , 1989 .

[8]  I. Koltracht,et al.  Efficient algorithm for Toeplitz plus Hankel matrices , 1989 .

[9]  V. Pan On computations with dense structured matrices , 1990 .

[10]  Dario Bini,et al.  A new preconditioner for the parallel solution of positive definite Toeplitz systems , 1990, SPAA '90.

[11]  R. Chan,et al.  The circulant operator in the banach algebra of matrices , 1991 .

[12]  Eugene E. Tyrtyshnikov,et al.  Optimal and Superoptimal Circulant Preconditioners , 1992, SIAM J. Matrix Anal. Appl..

[13]  Raymond H. Chan,et al.  Circulant preconditioners for Toeplitz matrices with piecewise continuous generating functions , 1992 .

[14]  Martin Ohsmann Fast cosine transform of Toeplitz matrices, algorithm and applications , 1993, IEEE Trans. Signal Process..

[15]  Paola Favati,et al.  On a matrix algebra related to the discrete Hartley transform , 1993 .

[16]  Israel Gohberg,et al.  Fast state space algorithms for matrix Nehari and Nehari-Takagi interpolation problems , 1994 .

[17]  I. Gohberg,et al.  Complexity of multiplication with vectors for structured matrices , 1994 .

[18]  J. Nagy,et al.  DISPLACEMENT PRECONDITIONER FOR TOEPLITZ LEAST SQUARES ITERATIONS , 1994 .

[19]  Georg Heinig,et al.  Inversion of generalized Cauchy matrices and other classes of structured matrices , 1995 .

[20]  I. Koltracht,et al.  Fast Transform Based Preconditioners for Toeplitz Equations , 1995, SIAM J. Matrix Anal. Appl..

[21]  Eugene E. Tyrtyshnikov,et al.  Circulant preconditioners with unbounded inverses , 1995 .

[22]  Thomas Kailath,et al.  Fast Gaussian elimination with partial pivoting for matrices with displacement structure , 1995 .

[23]  Thomas Kailath,et al.  Displacement structure approach to Chebyshev-Vandermonde and related matrices , 1995 .

[24]  Thomas Huckle,et al.  Cauchy matrices and iterative methods for Toeplitz matrices , 1995, Optics & Photonics.

[25]  Paolo Zellini,et al.  Matrix Decompositions Using Displacement Rank and Classes of Commutative Matrix Algebras , 1995 .

[26]  Martin Ohsmann,et al.  Fast transforms of toeplitz matrices , 1995 .

[27]  Adam W. Bojanczyk,et al.  Transformation Techniques for Toeplitz and Toeplitz-plus-Hankel Matrices Part I. Transformations , 1996 .

[28]  Raymond H. Chan,et al.  SINE TRANSFORM BASED PRECONDITIONERS FOR SYMMETRIC TOEPLITZ SYSTEMS , 1996 .

[29]  Thomas Kailath,et al.  Displacement-structure approach to polynomial Vandermonde and related matrices , 1997 .

[30]  Thomas Kailath,et al.  Diagonal pivoting for partially reconstructible Cauchy-like Matrices , 1997 .

[31]  Ming Gu,et al.  Stable and Efficient Algorithms for Structured Systems of Linear Equations , 1998, SIAM J. Matrix Anal. Appl..