On the electrochemical hydrogenation of Nb: An insight into the effect of hydrogen absorption on the kinetics of the hydrogen evolution reaction

[1]  Yang Yang,et al.  Nb-based compounds for rapid lithium-ion storage and diffusion , 2021 .

[2]  D. Aurbach,et al.  On the challenge of large energy storage by electrochemical devices , 2020 .

[3]  X. Li,et al.  Niobium-based oxide anodes toward fast and safe energy storage: a review , 2020 .

[4]  Kondo‐François Aguey‐Zinsou,et al.  How to Design Hydrogen Storage Materials? Fundamentals, Synthesis, and Storage Tanks , 2019, Advanced Sustainable Systems.

[5]  Ricardo P Nogueira,et al.  On the intrinsic passivating ability of Belite-Ye’elimite-Ferrite towards carbon steel: A straightforward comparison with ordinary Portland cement , 2019, Corrosion Science.

[6]  M. Musiani,et al.  Electrodeposition of metastable Ag-Rh alloys and study of their hydrogen storage ability in comparison with Pd , 2018 .

[7]  D. Santos,et al.  Efficient hydrogen evolution electrocatalysis in alkaline medium using Pd-modified zeolite X , 2018 .

[8]  B. Fang,et al.  Electrochemical hydrogen storage: Opportunities for fuel storage, batteries, fuel cells, and supercapacitors , 2017 .

[9]  Hui Wang,et al.  Progress of hydrogen storage alloys for Ni-MH rechargeable power batteries in electric vehicles: A review , 2017 .

[10]  Kasper T. Møller,et al.  Hydrogen - A sustainable energy carrier , 2017 .

[11]  F. d’Acapito,et al.  Computational Speciation Models: A Tool for the Interpretation of Spectroelectrochemistry for Catalytic Layers under Operative Conditions , 2017 .

[12]  H. Kitagawa,et al.  Nanometer-Size Effect on Hydrogen Sites in Palladium Lattice. , 2016, Journal of the American Chemical Society.

[13]  K. Ng,et al.  Electrochemical Open-Circuit Voltage and Pressure-Concentration-Temperature Isotherm Comparison for Metal Hydride Alloys , 2016 .

[14]  P. Marty,et al.  A new MgH2 tank concept using a phase change material to store the heat of reaction , 2013 .

[15]  Milutin Smiljanić,et al.  Catalysis of hydrogen evolution on different Pd/Au(1 1 1) nanostructures in alkaline solution , 2013 .

[16]  A. Lasia,et al.  Study of the hydrogen absorption in Pd in alkaline solution , 2008 .

[17]  Ricardo P Nogueira,et al.  Indirect identification of Hads relaxation on different metals by electrochemical impedance spectroscopy , 2007 .

[18]  L. Arsov,et al.  Electrochemical Passivation of Niobium in KOH Solutions , 2006 .

[19]  S. Omanovic,et al.  Ni and NiMo hydrogen evolution electrocatalysts electrodeposited in a polyaniline matrix , 2006 .

[20]  H. Perrot,et al.  Transfer function analysis of hydrogen permeation through a metallic membrane in a Devanathan cell: Part II: Experimental investigation on iron membrane , 2006 .

[21]  F. d’Acapito,et al.  Nb clusters formation in Nb-doped magnesium hydride , 2005 .

[22]  A. Robin Corrosion Behaviour of Niobium in Sodium Hydroxide Solutions , 2004 .

[23]  A. Robin Comparative study of Nb, Nb–10W, and Nb–16Ta–12W corrosion behavior in sodium hydroxide solutions , 2004 .

[24]  S. Berry,et al.  H in Niobium: Origin And Method Of Detection , 2003 .

[25]  J. Joubert,et al.  Metallic Hydrides II: Materials for Electrochemical Storage , 2002 .

[26]  N. Munichandraiah,et al.  Kinetics of hydrogen evolution on submicron size Co, Ni, Pd and Co–Ni alloy powder electrodes by d.c. polarization and a.c. impedance studies , 2002 .

[27]  A. Królikowski,et al.  Impedance studies of hydrogen evolution on NiP alloys , 2002 .

[28]  F. Huet,et al.  Electrochemical impedance of H2-evolving Pt electrode under bubble-induced and forced convections in alkaline solutions , 2002 .

[29]  F. Huet,et al.  Hydrogen absorption estimation on Pd electrodes from electrochemical noise measurements in single-compartment cells , 2001 .

[30]  O. Savadogo,et al.  Influence of SiW12O404− on the electrocatalytic behaviour of Pt–Co alloy supported on carbon for water electrolysis in 3 M KOH aqueous solution , 2001 .

[31]  M. Metikoš-huković,et al.  Correlation of electronic structure and catalytic activity of Zr-Ni amorphous alloys for the hydrogen evolution reaction , 2000 .

[32]  J. R. Vilche,et al.  An electrochemical impedance study on the kinetics and mechanism of the hydrogen evolution reaction on nickel molybdenite electrodes , 1997 .

[33]  P. Searson Hydrogen evolution and entry in palladium at high current density , 1991 .

[34]  R. Griessen,et al.  Heat of formation models , 1988 .

[35]  G. Khaldeev,et al.  Physical and Corrosion-electrochemical Properties of the Niobium-Hydrogen System , 1987 .

[36]  M. Sluyters-Rehbach,et al.  The analysis of electrode impedances complicated by the presence of a constant phase element , 1984 .

[37]  E. G. Smotritskaya,et al.  Hydrogen permeability of niobium during cathodic polarization in hydrochloric acid , 1977 .

[38]  R. Parsons Atlas of electrochemical equilibria in aqueous solutions : by Marcel Pourbaix, Pergamon Press, Oxford etc , Cebelcor, Brussels, 1966, 644 pages, £12 , 1967 .