Plasmon‐Enhanced Sub‐Wavelength Laser Ablation: Plasmonic Nanojets

In response to the incident light's electric field, the electron density oscillates in the plasmonic hotspots producing an electric current. Associated Ohmic losses raise the temperature of the material within the plasmonic hotspot above the melting point. A nanojet and nanosphere ejection can then be observed precisely from the plasmonic hotspots.

[1]  F. J. García de abajo,et al.  Nanoscopic ultrafast space-time-resolved spectroscopy. , 2005, Physical review letters.

[2]  T. Okada,et al.  Nano-Sized Hollow Bump Array Generated by Single Femtosecond Laser Pulse , 2003 .

[3]  A. I. Kuznetsov,et al.  Laser-induced backward transfer of gold nanodroplets. , 2009, Optics express.

[4]  B. Chichkov,et al.  Laser-induced transfer of metallic nanodroplets for plasmonics and metamaterial applications , 2009 .

[5]  V V Moshchalkov,et al.  Linearly polarized second harmonic generation microscopy reveals chirality. , 2010, Optics express.

[6]  Werner Gillijns,et al.  Plasmons reveal the direction of magnetization in nickel nanostructures. , 2011, ACS nano.

[7]  V V Moshchalkov,et al.  Hotspot decorations map plasmonic patterns with the resolution of scanning probe techniques. , 2011, Physical review letters.

[8]  David J. Bergman,et al.  Coherent control of nanoscale localization of ultrafast optical excitation in nanosystems , 2004 .

[9]  Nanolocalized nonlinear electron photoemission under coherent control. , 2005 .

[10]  T. Chong,et al.  Pulsed-laser assisted nanopatterning of metallic layers combined with atomic force microscopy , 2002 .

[11]  Leonid V. Zhigilei,et al.  Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films , 2003 .

[12]  Ferenc Krausz,et al.  Attosecond Nanoplasmonic Field Microscope , 2007 .

[13]  D. Bergman,et al.  Coherent control of femtosecond energy localization in nanosystems. , 2002, Physical review letters.

[14]  Guy A. E. Vandenbosch,et al.  On the use of the Method of Moments in plasmonic applications , 2010, 2010 URSI International Symposium on Electromagnetic Theory.

[15]  K. Komvopoulos,et al.  Femtosecond laser aperturless near-field nanomachining of metals assisted by scanning probe microscopy , 2003 .

[16]  Boris N. Chichkov,et al.  Laser fabrication of large-scale nanoparticle arrays for sensing applications. , 2011, ACS nano.

[17]  Gerard M. O'Connor,et al.  Nanocrystalline structure of nanobump generated by localized photoexcitation of metal film , 2010 .

[18]  V V Moshchalkov,et al.  Asymmetric optical second-harmonic generation from chiral G-shaped gold nanostructures. , 2010, Physical review letters.

[19]  Shaochen Chen,et al.  Nanopatterning of a silicon surface by near-field enhanced laser irradiation , 2003 .

[20]  Johannes Boneberg,et al.  Femtosecond laser near-field ablation from gold nanoparticles , 2006 .

[21]  Michael Bauer,et al.  Adaptive subwavelength control of nano-optical fields , 2007, Nature.

[22]  O. A. Aktsipetrov,et al.  The origin of second harmonic generation hotspots in chiral optical metamaterials , 2011, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[23]  Boris N. Chichkov,et al.  Nanostructuring of thin gold films by femtosecond lasers , 2009 .

[24]  Boris N. Chichkov,et al.  Formation of microbumps and nanojets on gold targets by femtosecond laser pulses , 2004 .

[25]  Brent C. Stuart,et al.  Optical ablation by high-power short-pulse lasers , 1996 .

[26]  T. Glynn,et al.  The mechanism of nanobump formation in femtosecond pulse laser nanostructuring of thin metal films , 2008 .

[27]  A. I. Kuznetsov,et al.  Laser fabrication of 2D and 3D metal nanoparticle structures and arrays. , 2010, Optics express.

[28]  V V Moshchalkov,et al.  Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures. , 2009, Nano letters.