Modeling bottlenecks, modularity, and context-dependency in behavioral control

In almost all animals, the transfer of information from the brain to the motor circuitry is facilitated by a relatively small number of neurons, leading to a constraint on the amount of information that can be transmitted. Our knowledge of how animals encode information through this pathway, and the consequences of this encoding, however, is limited. In this study, we use a simple feed-forward neural network to investigate the consequences of having such a bottleneck and identify aspects of the network architecture that enable robust information transfer. We are able to explain some recently observed properties of descending neurons – that they exhibit a modular pattern of connectivity and that their excitation leads to consistent alterations in behavior that are often dependent upon the prior behavioral state (context-dependency). Our model predicts that in the presence of an information bottleneck, such a modular structure is needed to increase the efficiency of the network and to make it more robust to perturbations. However, it does so at the cost of an increase in context-dependency. Despite its simplicity, our model is able to provide intuition for the trade-offs faced by the nervous system in the presence of an information processing constraint and makes predictions for future experiments.

[1]  Kristin Branson,et al.  State-dependent decoupling of sensory and motor circuits underlies behavioral flexibility in Drosophila , 2019, Nature Neuroscience.

[2]  Gordon J. Berman,et al.  Neural Evolution of Context-Dependent Fly Song , 2019, Current Biology.

[3]  James E. Fitzgerald,et al.  Threshold-Based Ordering of Sequential Actions during Drosophila Courtship , 2019, Current Biology.

[4]  Shigehiro Namiki,et al.  Speed dependent descending control of freezing behavior in Drosophila melanogaster , 2018, Nature Communications.

[5]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection , 2018, J. Open Source Softw..

[6]  Michael H Dickinson,et al.  The functional organization of descending sensory-motor pathways in Drosophila , 2017, bioRxiv.

[7]  Gordon J. Berman,et al.  Optogenetic dissection of descending behavioral control in Drosophila , 2017, bioRxiv.

[8]  C. Smarandache-Wellmann,et al.  Arthropod neurons and nervous system , 2016, Current Biology.

[9]  Vikas Bhandawat,et al.  Organization of descending neurons in Drosophila melanogaster , 2016, Scientific Reports.

[10]  A. Leonardo,et al.  A spike-timing mechanism for action selection , 2014, Nature Neuroscience.

[11]  Barry J. Dickson,et al.  Neuronal Control of Drosophila Walking Direction , 2014, Science.

[12]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[13]  W. Gronenberg,et al.  Descending neurons supplying the neck and flight motor of diptera: Physiological and anatomical characteristics , 1990, The Journal of comparative neurology.