Asymptotic Normality of Maximum Likelihood and its Variational Approximation for Stochastic Blockmodels

Variational methods for parameter estimation are an active research area, potentially offering computationally tractable heuristics with theoretical performance bounds. We build on recent work that applies such methods to network data, and establish asymptotic normality rates for parameter estimates of stochastic blockmodel data, by either maximum likelihood or variational estimation. The result also applies to various sub-models of the stochastic blockmodel found in the literature.

[1]  P. Bickel,et al.  The method of moments and degree distributions for network models , 2011, 1202.5101.

[2]  A. Pentland,et al.  Life in the network: The coming age of computational social science: Science , 2009 .

[3]  Amin Coja-Oghlan,et al.  Partitioning Random Graphs with General Degree Distributions , 2008, IFIP TCS.

[4]  Fan Chung Graham,et al.  Spectral Clustering of Graphs with General Degrees in the Extended Planted Partition Model , 2012, COLT.

[5]  Alain Celisse,et al.  Consistency of maximum-likelihood and variational estimators in the Stochastic Block Model , 2011, 1105.3288.

[6]  Karl Rohe,et al.  The Highest Dimensional Stochastic Blockmodel with a Regularized Estimator , 2012, 1206.2380.

[7]  Peter D. Hoff,et al.  Latent Space Approaches to Social Network Analysis , 2002 .

[8]  Béla Bollobás,et al.  The phase transition in inhomogeneous random graphs , 2007, Random Struct. Algorithms.

[9]  Edwin R. Hancock,et al.  Spectral Clustering of Graphs , 2003, GbRPR.

[10]  Mark E. J. Newman,et al.  Stochastic blockmodels and community structure in networks , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  P. Latouche,et al.  Overlapping stochastic block models with application to the French political blogosphere , 2009, 0910.2098.

[12]  J. Daudin,et al.  Classification and estimation in the Stochastic Block Model based on the empirical degrees , 2011, 1110.6517.

[13]  Lucien Le Cam,et al.  On the Preservation of Local Asymptotic Normality under Information Loss , 1988 .

[14]  Stephen E. Fienberg,et al.  Testing Statistical Hypotheses , 2005 .

[15]  Franck Picard,et al.  A mixture model for random graphs , 2008, Stat. Comput..

[16]  T. Snijders,et al.  Estimation and Prediction for Stochastic Blockmodels for Graphs with Latent Block Structure , 1997 .

[17]  Ji Zhu,et al.  Consistency of community detection in networks under degree-corrected stochastic block models , 2011, 1110.3854.

[18]  Edoardo M. Airoldi,et al.  Stochastic blockmodels with growing number of classes , 2010, Biometrika.

[19]  Bin Yu,et al.  Spectral clustering and the high-dimensional stochastic blockmodel , 2010, 1007.1684.

[20]  Patrick C Phillips,et al.  Network thinking in ecology and evolution. , 2005, Trends in ecology & evolution.

[21]  P. Bickel,et al.  A nonparametric view of network models and Newman–Girvan and other modularities , 2009, Proceedings of the National Academy of Sciences.

[22]  A. Raftery,et al.  Model‐based clustering for social networks , 2007 .