The glideosome: a molecular machine powering motility and host-cell invasion by Apicomplexa.

The apicomplexans are obligate intracellular protozoan parasites that rely on gliding motility for their migration across biological barriers and for host-cell invasion and egress. This unusual form of substrate-dependent motility is powered by the "glideosome", a macromolecular complex consisting of adhesive proteins that are released apically and translocated to the posterior pole of the parasite by the action of an actomyosin system anchored in the inner membrane complex of the parasite. Recent studies have revealed new insights into the composition and biogenesis of Toxoplasma gondii myosin-A motor complex and have identified an exciting set of small molecules that can interfere with different aspects of glideosome function.

[1]  L. Sibley,et al.  Aldolase forms a bridge between cell surface adhesins and the actin cytoskeleton in apicomplexan parasites. , 2003, Molecular cell.

[2]  T. Mann,et al.  Characterization of the subpellicular network, a filamentous membrane skeletal component in the parasite Toxoplasma gondii. , 2001, Molecular and biochemical parasitology.

[3]  D. Soldati,et al.  Two Conserved Amino Acid Motifs Mediate Protein Targeting to the Micronemes of the Apicomplexan ParasiteToxoplasma gondii , 2000, Molecular and Cellular Biology.

[4]  K. Joiner,et al.  The Protozoan Parasite Toxoplasma gondii Targets Proteins to Dense Granules and the Vacuolar Space Using Both Conserved and Unusual Mechanisms , 1998, The Journal of cell biology.

[5]  T. Mann,et al.  Identification of the membrane receptor of a class XIV myosin in Toxoplasma gondii , 2004, The Journal of cell biology.

[6]  G. McFadden,et al.  The apicoplast: a plastid in Plasmodium falciparum and other Apicomplexan parasites. , 2003, International review of cytology.

[7]  L. Sibley,et al.  Rapid invasion of host cells by Toxoplasma requires secretion of the MIC2–M2AP adhesive protein complex , 2003, The EMBO journal.

[8]  L. Sibley,et al.  The Toxoplasma Proteins MIC2 and M2AP Form a Hexameric Complex Necessary for Intracellular Survival* , 2004, Journal of Biological Chemistry.

[9]  L. Sibley,et al.  Toxoplasma evacuoles: a two‐step process of secretion and fusion forms the parasitophorous vacuole , 2001, The EMBO journal.

[10]  K. Joiner,et al.  The Toxoplasma gondii rhoptry protein ROP 2 is inserted into the parasitophorous vacuole membrane, surrounding the intracellular parasite, and is exposed to the host cell cytoplasm , 1994, The Journal of cell biology.

[11]  D. Soldati,et al.  Toxoplasma gondii myosin A and its light chain: a fast, single‐headed, plus‐end‐directed motor , 2002, The EMBO journal.

[12]  G. Torpier,et al.  [Freeze fracture study of Toxoplasma and Sarcocystis infective stages (author's transl)]. , 1977, Zeitschrift fur Parasitenkunde.

[13]  M VALENTINCIC,et al.  [Toxoplasma gondii]. , 1953, Zdravstveni vestnik.

[14]  Masao Yuda,et al.  Cell-Passage Activity Is Required for the Malarial Parasite to Cross the Liver Sinusoidal Cell Layer , 2004, PLoS biology.

[15]  D. Roos,et al.  Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Andrea Crisanti,et al.  TRAP Is Necessary for Gliding Motility and Infectivity of Plasmodium Sporozoites , 1997, Cell.

[17]  G. Torpier,et al.  Freeze fracture study of the pellicle of an eimerian sporozoite (Protozoa, Coccidia). , 1978, Journal of ultrastructure research.

[18]  I. Coppens,et al.  Sites of interaction between aldolase and thrombospondin-related anonymous protein in plasmodium. , 2003, Molecular biology of the cell.

[19]  T. Mitchison,et al.  A small-molecule approach to studying invasive mechanisms of Toxoplasma gondii. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[20]  L. Miller,et al.  Interaction between cytochalasin B-treated malarial parasites and erythrocytes. Attachment and junction formation , 1979, The Journal of experimental medicine.

[21]  D. Roos,et al.  Subpellicular microtubules associate with an intramembranous particle lattice in the protozoan parasite Toxoplasma gondii. , 1997, Journal of cell science.

[22]  J. Boothroyd,et al.  Role of calcium during Toxoplasma gondii invasion and egress. , 2004, International journal for parasitology.

[23]  K. Joiner,et al.  Targeting to rhoptry organelles of Toxoplasma gondii involves evolutionarily conserved mechanisms. , 2000, Nature Cell Biology.

[24]  R. Wilson,et al.  Actomyosin motor in the merozoite of the malaria parasite, Plasmodium falciparum: implications for red cell invasion. , 1998, Journal of cell science.

[25]  David S. Roos,et al.  A novel polymer of tubulin forms the conoid of Toxoplasma gondii , 2002, The Journal of cell biology.

[26]  S. Shorte,et al.  Imaging movement of malaria parasites during transmission by Anopheles mosquitoes , 2004, Cellular microbiology.

[27]  D. Soldati,et al.  Microneme proteins: structural and functional requirements to promote adhesion and invasion by the apicomplexan parasite Toxoplasma gondii. , 2001, International journal for parasitology.

[28]  R. Ménard,et al.  Conservation of a Gliding Motility and Cell Invasion Machinery in Apicomplexan Parasites , 1999, The Journal of cell biology.

[29]  K. Joiner,et al.  The Toxoplasma gondii protein ROP2 mediates host organelle association with the parasitophorous vacuole membrane , 2001, The Journal of cell biology.

[30]  J. Schwartzman,et al.  A novel class of unconventional myosins from Toxoplasma gondii. , 1997, Journal of molecular biology.

[31]  L. Sibley,et al.  Actin filament polymerization regulates gliding motility by apicomplexan parasites. , 2003, Molecular biology of the cell.

[32]  L. Sibley,et al.  Transepithelial Migration of Toxoplasma gondii Is Linked to Parasite Motility and Virulence , 2002, The Journal of experimental medicine.

[33]  C. Beckers,et al.  The Loss of Cytoplasmic Potassium upon Host Cell Breakdown Triggers Egress of Toxoplasma gondii* , 2001, The Journal of Biological Chemistry.

[34]  I. Coppens,et al.  Myosin A tail domain interacting protein (MTIP) localizes to the inner membrane complex of Plasmodium sporozoites , 2003, Journal of Cell Science.

[35]  Rafael Cantera,et al.  Real-time, in vivo analysis of malaria ookinete locomotion and mosquito midgut invasion. , 2004, Cellular microbiology.