Rapid Aging of Bilayer Graphene Oxide

[1]  A. Talyzin Random interstratification in hydrated graphene oxide membranes and implications for seawater desalination , 2022, Nature Nanotechnology.

[2]  J. Chew,et al.  Organic Solvent Permeation through Negatively Charged Graphene Oxide Membranes , 2022, ACS Sustainable Chemistry & Engineering.

[3]  M. Shirakawa,et al.  Overcoming humidity-induced swelling of graphene oxide-based hydrogen membranes using charge-compensating nanodiamonds , 2021, Nature Energy.

[4]  Kyoung Min Kang,et al.  Graphene-based ultrafast nanofiltration membrane under cross-flow operation: Effect of high-flux and filtered solute on membrane performance , 2021, Carbon.

[5]  Ke Xu,et al.  Laminated GO membranes for water transport and ions selectivity: Mechanism, synthesis, stabilization, and applications , 2021 .

[6]  Jinhuan Sun,et al.  Swollen Structures of Brodie Graphite Oxide as Solid Solvates , 2020, The Journal of Physical Chemistry C.

[7]  Nicolas Boulanger,et al.  Enhanced Sorption of Radionuclides by Defect-Rich Graphene Oxide , 2020, ACS applied materials & interfaces.

[8]  S. Ida,et al.  Free Standing Graphene Oxide Membrane with Epoxy Groups for Water Purification , 2020 .

[9]  J. Biskupek,et al.  Brodie's or Hummers' Method: Oxidation Conditions Determine the Structure of Graphene Oxide. , 2019, Chemistry.

[10]  I. Sokolov,et al.  Non-monotonous Wetting of Graphene-Mica and MoS2-Mica Interfaces with a Molecular Layer of Water. , 2018, Langmuir : the ACS journal of surfaces and colloids.

[11]  M. Arnold,et al.  Invariance of Water Permeance through Size-Differentiated Graphene Oxide Laminates. , 2018, ACS nano.

[12]  Jinhuan Sun,et al.  Swelling of Thin Graphene Oxide Films Studied by in Situ Neutron Reflectivity , 2018 .

[13]  V. Kravets,et al.  Electrically controlled water permeation through graphene oxide membranes , 2018, Nature.

[14]  S. Eigler,et al.  Defects in Graphene Oxide as Structural Motifs , 2018 .

[15]  Kyoung Min Kang,et al.  Ultrathin graphene oxide membranes on freestanding carbon nanotube supports for enhanced selective permeation in organic solvents , 2018, Scientific Reports.

[16]  F. Guinea,et al.  Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation. , 2017, Nature materials.

[17]  X. Bai,et al.  Structure of mammalian endolysosomal TRPML1 channel in nanodiscs , 2017, Nature.

[18]  R. Hurt,et al.  Breathable Vapor Toxicant Barriers Based on Multilayer Graphene Oxide. , 2017, ACS nano.

[19]  D. Cotton,et al.  Brodie vs Hummers graphite oxides for preparation of multi-layered materials , 2017 .

[20]  Miao Yu,et al.  Self-Assembly: A Facile Way of Forming Ultrathin, High-Performance Graphene Oxide Membranes for Water Purification. , 2017, Nano letters.

[21]  A. Fery,et al.  Systematic evaluation of different types of graphene oxide in respect to variations in their in-plane modulus , 2017 .

[22]  Sarah J. Haigh,et al.  Tunable sieving of ions using graphene oxide membranes. , 2017, Nature nanotechnology.

[23]  G. Shi,et al.  Graphene Oxide Membranes with Tunable Semipermeability in Organic Solvents , 2015, Advanced materials.

[24]  Changgu Lee,et al.  Graphene oxide membrane for liquid phase organic molecular separation , 2014 .

[25]  A. Hirsch,et al.  Chemistry with graphene and graphene oxide-challenges for synthetic chemists. , 2014, Angewandte Chemie.

[26]  A. Talyzin,et al.  Hydration of bilayered graphene oxide. , 2014, Nano letters.

[27]  D. R. Paul,et al.  Free-standing graphene oxide thin films assembled by a pressurized ultrafiltration method for dehydration of ethanol , 2014 .

[28]  A. Hirsch,et al.  Statistical Raman Microscopy and Atomic Force Microscopy on Heterogeneous Graphene Obtained after Reduction of Graphene Oxide , 2014, 1805.04248.

[29]  I. V. Grigorieva,et al.  Precise and Ultrafast Molecular Sieving Through Graphene Oxide Membranes , 2014, Science.

[30]  Miao Zhu,et al.  Selective trans-membrane transport of alkali and alkaline earth cations through graphene oxide membranes based on cation-π interactions. , 2014, ACS nano.

[31]  Miao Yu,et al.  Ultrathin, Molecular-Sieving Graphene Oxide Membranes for Selective Hydrogen Separation , 2013, Science.

[32]  Jae-Young Choi,et al.  Selective Gas Transport Through Few-Layered Graphene and Graphene Oxide Membranes , 2013, Science.

[33]  C. Papp,et al.  Wet Chemical Synthesis of Graphene , 2013, Advanced materials.

[34]  A. Talyzin,et al.  Effect of synthesis method on solvation and exfoliation of graphite oxide , 2013 .

[35]  James M Tour,et al.  Graphene oxide. Origin of acidity, its instability in water, and a new dynamic structural model. , 2013, ACS nano.

[36]  A. Talyzin,et al.  Enormous lattice expansion of hummers graphite oxide in alcohols at low temperatures. , 2013, ACS nano.

[37]  E. Riedo,et al.  Room-temperature metastability of multilayer graphene oxide films. , 2012, Nature materials.

[38]  A. Talyzin,et al.  Phase Transitions in Graphite Oxide Solvates at Temperatures Near Ambient. , 2012, The journal of physical chemistry letters.

[39]  J. Tour,et al.  Pristine graphite oxide. , 2012, Journal of the American Chemical Society.

[40]  I. Sokolov,et al.  Reversible dewetting of a molecularly thin fluid water film in a soft graphene-mica slit pore. , 2012, Nano letters.

[41]  I. Grigorieva,et al.  Unimpeded Permeation of Water Through Helium-Leak–Tight Graphene-Based Membranes , 2011, Science.

[42]  D. Dikin,et al.  Drop-casted self-assembling graphene oxide membranes for scanning electron microscopy on wet and dense gaseous samples. , 2011, ACS nano.

[43]  Rolf Erni,et al.  Determination of the Local Chemical Structure of Graphene Oxide and Reduced Graphene Oxide , 2010, Advanced materials.

[44]  J. R. Katz,et al.  Untersuchungen über die Intramicellare Quellung der Graphitsäure. Erste Mitteilung. Isotherme. Einfluss von lyotropen Substanzen, von Temperatur und von PH auf das Quellungsmaximum , 2010 .

[45]  Ye Lu,et al.  High yield preparation of macroscopic graphene oxide membranes. , 2009, Journal of the American Chemical Society.

[46]  A. Talyzin,et al.  Pressure-induced insertion of liquid alcohols into graphite oxide structure. , 2009, Journal of the American Chemical Society.

[47]  S. Stankovich,et al.  Preparation and characterization of graphene oxide paper , 2007, Nature.

[48]  Imre Dékány,et al.  Evolution of surface functional groups in a series of progressively oxidized graphite oxides , 2006 .

[49]  Imre Dékány,et al.  Hydration behavior and dynamics of water molecules in graphite oxide , 2006 .

[50]  D. Macewan,et al.  Temperature Variation of β-Type Interlamellar Sorption Complexes of Graphitic Acid with Alcohols , 1964, Nature.

[51]  U. Hofmann,et al.  Graphite oxide and its membrane properties , 1961 .

[52]  W. S. Hummers,et al.  Preparation of Graphitic Oxide , 1958 .

[53]  D. Macewan,et al.  Interlamellar Sorption Complexes of Graphitic Acid with Organic Substances , 1955, Nature.

[54]  U. Hofmann,et al.  Die Abhängigkeit des Kationenaustausches und der Quellung bei Montmorillonit von der Vorerhitzung (Auszug) , 1939 .

[55]  U. Hofmann,et al.  Die Konstitution der Graphitsure und ihre Reaktionen , 1934 .

[56]  U. Hofmann,et al.  Quellung von Graphit und die Bildung von Graphitsäure , 1930 .

[57]  Benjamin Collins Brodie,et al.  On the Atomic Weight of Graphite , 1859 .