Anisotropic crouzeix-raviart type nonconforming finite element methods to variational inequality problem with displacement obstacle

In this paper, anisotropic Crouzeix-Raviart type nonconforming finite element methods are considered for solving the second order variational inequality with displacement obstacle. The convergence analysis is presented and the optimal order error estimates are obtained under the hypothesis of the finite length of the free boundary. Numerical results are provided to illustrate the correctness of theoretical analysis.

[1]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[2]  Dongyang Shi,et al.  Anisotropic interpolations with application to nonconforming elements , 2004 .

[3]  Thomas Apel,et al.  Anisotropic interpolation with applications to the finite element method , 1991, Computing.

[4]  Dongyang,et al.  THE SUPERCONVERGENCE ANALYSIS OF AN ANISOTROPIC FINITE ELEMENT , 2005 .

[5]  Michèle Vanmaele,et al.  The interpolation theorem for narrow quadrilateral isoparametric finite elements , 1995 .

[6]  J. Rodrigues Obstacle Problems in Mathematical Physics , 1987 .

[7]  Dongyang Shi,et al.  A class of Crouzeix-Raviart type nonconforming finite element methods for parabolic variational inequality problem with moving grid on anisotropic meshes , 2007 .

[8]  Lie-heng Wang,et al.  On the quadratic finite element approximation to the obstacle problem , 2002, Numerische Mathematik.

[9]  William W. Hager,et al.  Error estimates for the finite element solution of variational inequalities , 1978 .

[10]  Lie-heng Wang Error estimates of two nonconforming finite elements for the obstacle problem , 1986 .

[11]  Shao-chunChen,et al.  AN ANISOTROPIC NONCONFORMING FINITE ELEMENT WITH SOME SUPERCONVERGENCE RESULTS , 2005 .

[12]  Chao Xu,et al.  Anisotropic Nonconforming $${ EQ}_1^{rot}$$ Quadrilateral Finite Element Approximation to Second Order Elliptic Problems , 2013, J. Sci. Comput..

[13]  R. Rannacher,et al.  Simple nonconforming quadrilateral Stokes element , 1992 .

[14]  Lie-hengWang ON THE ERROR ESTIMATE OF NONCONFORMING FINITE ELEMENT APPROXIMATION TO THE OBSTACLE PROBLEM , 2003 .

[15]  Dongyang Shi,et al.  Anisotropic interpolation and quasi‐Wilson element for narrow quadrilateral meshes , 2004 .

[16]  R. S. Falk Error estimates for the approximation of a class of variational inequalities , 1974 .

[17]  Wang,et al.  AN ANISOTROPIC NONCONFORMING FINITE ELEMENT METHOD FOR APPROXIMATING A CLASS OF NONLINEAR SOBOLEV EQUATIONS , 2009 .

[18]  Shi,et al.  CONVERGENCE ANALYSIS FOR A NONCONFORMING MEMBRANE ELEMENT ON ANISOTROPIC MESHES , 2005 .

[19]  Chao-Jiang Xu,et al.  EQ1rot nonconforming finite element approximation to Signorini problem , 2013 .

[20]  Yongmin Zhang,et al.  Multilevel projection algorithm for solving obstacle problems , 2001 .

[21]  Shi Dong-yang Anisotropic Nonconforming Finite Element Approximation to Variational Inequality Problems with Displacement Obstacle , 2006 .