Generalised Polynomial Chaos for a Class of Linear Conservation Laws

Mathematical modelling of dynamical systems often yields partial differential equations (PDEs) in time and space, which represent a conservation law possibly including a source term. Uncertainties in physical parameters can be described by random variables. To resolve the stochastic model, the Galerkin technique of the generalised polynomial chaos results in a larger coupled system of PDEs. We consider a certain class of linear systems of conservation laws, which exhibit a hyperbolic structure. Accordingly, we analyse the hyperbolicity of the corresponding coupled system of linear conservation laws from the polynomial chaos. Numerical results of two illustrative examples are presented.

[1]  Dongbin Xiu,et al.  Galerkin method for wave equations with uncertain coefficients , 2008 .

[2]  Alexandre Ern,et al.  Intrusive Galerkin methods with upwinding for uncertain nonlinear hyperbolic systems , 2010, J. Comput. Phys..

[3]  Guang Lin,et al.  Predicting shock dynamics in the presence of uncertainties , 2006, J. Comput. Phys..

[4]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[5]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[6]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[7]  D. Xiu Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .

[8]  Roland Pulch,et al.  POLYNOMIAL CHAOS FOR LINEAR DIFFERENTIAL ALGEBRAIC EQUATIONS WITH RANDOM PARAMETERS , 2011 .

[9]  D. Xiu Fast numerical methods for stochastic computations: A review , 2009 .

[10]  Roland Pulch,et al.  Polynomial chaos for simulating random volatilities , 2009, Math. Comput. Simul..

[11]  R. LeVeque Numerical methods for conservation laws , 1990 .

[12]  Jan S. Hesthaven,et al.  Uncertainty analysis for the steady-state flows in a dual throat nozzle , 2005 .

[13]  Bruno Després,et al.  Uncertainty quantification for systems of conservation laws , 2009, J. Comput. Phys..

[14]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[15]  David F. Gleich,et al.  Spectral Methods for Parameterized Matrix Equations , 2009, SIAM J. Matrix Anal. Appl..

[16]  P. Rentrop,et al.  Polynomial chaos for the approximation of uncertainties: Chances and limits , 2008, European Journal of Applied Mathematics.