Partitioned camera-OCT based 6 DOF visual servoing for automatic repetitive optical biopsies

This paper addresses the design of a partitioned vision-guided scheme for repetitive optical biopsies. More precisely, our approach uses two image modalities to perform 6 degrees of freedom (DOF) positioning task. The development aims to partition the control into 3 DOF controlled by the B-scan images acquired with an optical coherence tomography (OCT) system and the remaining 3 DOF controlled by the white light images provided by a CCD camera. Moreover, for the control and instead of conventional visual features (e.g., points, lines, moments, etc.) extracted using algorithms combined with visual tracking approaches, our visual servoing method uses the multiresolution wavelet coefficients. The developed method was experimentally validated using a parallel kinematic structure equipped with a Telesto-II OCT benchtop. The validation task consisted of an automatic spatial repositioning of the robotic structure to precisely retrieve the position of an initial optical biopsy. Several tests are achieved, which clearly demonstrate the reliability of the proposed controller.

[1]  J. Schuman,et al.  Optical coherence tomography. , 2000, Science.

[2]  Brett E. Bouma,et al.  Tethered capsule endomicroscopy enables less-invasive imaging of gastrointestinal tract microstructure , 2012, Nature Medicine.

[3]  Ch. Bernard,et al.  Wavelets and ill-posed problems : optic flow estimation and scattered data interpolation , 1999 .

[4]  Sounkalo Dembélé,et al.  Visual servoing schemes for automatic nanopositioning under scanning electron microscope , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[5]  Irving J. Bigio,et al.  Optical Biopsy , 2020, Definitions.

[6]  Rafik Mebarki,et al.  2-D Ultrasound Probe Complete Guidance by Visual Servoing Using Image Moments , 2010, IEEE Transactions on Robotics.

[7]  Guillaume Morel,et al.  Building Large Mosaics of Confocal Edomicroscopic Images Using Visual Servoing , 2013, IEEE Transactions on Biomedical Engineering.

[8]  Peter I. Corke,et al.  A tutorial on visual servo control , 1996, IEEE Trans. Robotics Autom..

[9]  A. Fercher,et al.  Optical coherence tomography - principles and applications , 2003 .

[10]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  M. Victor Wickerhauser,et al.  Wavelets: Algorithms and Applications (Yves Meyer) , 1994, SIAM Rev..

[12]  G. J. Laurent,et al.  Automated in-plane OCT-system Positioning Towards Repetitive Optical Biopsies , 2016 .

[13]  J. Fujimoto,et al.  In vivo endoscopic optical biopsy with optical coherence tomography. , 1997, Science.

[14]  Nicolas Andreff,et al.  Wavelets-based 6 DOF visual servoing , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[15]  Éric Marchand,et al.  Highly precise micropositioning task using a direct visual servoing scheme , 2011, 2011 IEEE International Conference on Robotics and Automation.

[16]  Manolis I. A. Lourakis A Brief Description of the Levenberg-Marquardt Algorithm Implemented by levmar , 2005 .

[17]  Sounkalo Dembélé,et al.  Image-Guided Nanopositioning Scheme for SEM , 2018, IEEE Transactions on Automation Science and Engineering.

[18]  François Chaumette,et al.  Visual servo control. I. Basic approaches , 2006, IEEE Robotics & Automation Magazine.

[19]  Christophe Collewet,et al.  Photometric Visual Servoing , 2011, IEEE Transactions on Robotics.

[20]  Thomas D. Wang,et al.  Optical biopsy: a new frontier in endoscopic detection and diagnosis. , 2004, Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association.

[21]  Éric Marchand,et al.  Mutual Information-Based Visual Servoing , 2011, IEEE Transactions on Robotics.