Rain or shine? Forecasting search process performance in exploratory search tasks

Most information retrieval (IR) systems consider relevance, usefulness, and quality of information objects (documents, queries) for evaluation, prediction, and recommendation, often ignoring the underlying search process of information seeking. This may leave out opportunities for making recommendations that analyze the search process and/or recommend alternative search process instead of objects. To overcome this limitation, we investigated whether by analyzing a searcher's current processes we could forecast his likelihood of achieving a certain level of success with respect to search performance in the future. We propose a machine‐learning‐based method to dynamically evaluate and predict search performance several time‐steps ahead at each given time point of the search process during an exploratory search task. Our prediction method uses a collection of features extracted from expression of information need and coverage of information. For testing, we used log data collected from 4 user studies that included 216 users (96 individuals and 60 pairs). Our results show 80–90% accuracy in prediction depending on the number of time‐steps ahead. In effect, the work reported here provides a framework for evaluating search processes during exploratory search tasks and predicting search performance. Importantly, the proposed approach is based on user processes and is independent of any IR system.

[1]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[2]  Rob J Hyndman,et al.  Forecasting with Exponential Smoothing: The State Space Approach , 2008 .

[3]  Robert S. Taylor Question-Negotiation and Information Seeking in Libraries , 1968, Coll. Res. Libr..

[4]  Brenda Dervin,et al.  Sense-making theory and practice: an overview of user interests in knowledge seeking and use , 1998, J. Knowl. Manag..

[5]  Michael K. Buckland,et al.  Information as thing , 1991, J. Am. Soc. Inf. Sci..

[6]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[7]  Roberto I. González-Ibáñez,et al.  Time and space in collaborative information seeking: The clash of effectiveness and uniqueness , 2012, ASIST.

[8]  Robert G. Capra,et al.  Designing exploratory search tasks for user studies of information seeking support systems , 2009, JCDL '09.

[9]  Luanne Freund,et al.  Assigning search tasks designed to elicit exploratory search behaviors , 2012, HCIR '12.

[10]  Ryen W. White,et al.  Pseudo-collaboration as a method to perform selective algorithmic mediation in collaborative IR systems , 2012, ASIST.

[11]  Brian N. Bershad,et al.  Why we search: visualizing and predicting user behavior , 2007, WWW '07.

[12]  Kai Ming Ting,et al.  Precision and Recall , 2017, Encyclopedia of Machine Learning and Data Mining.

[13]  Paul Solomon,et al.  Looking for Information—A Survey of Research on Information Seeking, Needs, and Behavior , 2003, Information Retrieval.

[14]  Iadh Ounis,et al.  Query performance prediction , 2006, Inf. Syst..

[15]  Tefko Saracevic,et al.  Evaluation of evaluation in information retrieval , 1995, SIGIR '95.

[16]  Chirag Shah,et al.  Evaluating high accuracy retrieval techniques , 2004, SIGIR '04.

[17]  Charles Cole,et al.  A theory of information need for information retrieval that connects information to knowledge , 2011, J. Assoc. Inf. Sci. Technol..

[18]  Steve Fox,et al.  Evaluating implicit measures to improve web search , 2005, TOIS.

[19]  Michael Gertz,et al.  On the value of temporal information in information retrieval , 2007, SIGF.

[20]  Kyoung-jae Kim,et al.  Financial time series forecasting using support vector machines , 2003, Neurocomputing.

[21]  Bracha Shapira,et al.  Recommender Systems Handbook , 2015, Springer US.

[22]  Allen Kent,et al.  Machine literature searching VIII. Operational criteria for designing information retrieval systems , 1955 .

[23]  Nicholas J. Belkin,et al.  Exploration of dynamic query suggestions and dynamic search results for their effects on search behaviors , 2012, ASIST.

[24]  T. D. Wilson,et al.  Review of: Cole, Charles Information need: a theory connecting information search to knowledge formation. Medford, NJ: Information Today, Inc., 2012 , 2012, Information Research.

[25]  Charles Cole,et al.  Tracking middle school students' information behavior via Kuhlthau's ISP Model:Temporality , 2015, J. Assoc. Inf. Sci. Technol..

[26]  Gary Marchionini,et al.  Exploratory search , 2006, Commun. ACM.

[27]  Ryen W. White,et al.  Exploratory Search: Beyond the Query-Response Paradigm , 2009, Exploratory Search: Beyond the Query-Response Paradigm.

[28]  Christine Urquhart,et al.  Information Need: A Theory Connecting Information Search to Knowledge Formation , 2013, J. Documentation.

[29]  Amanda Spink,et al.  Information seeking and mediated searching: Part 2. Uncertainty and its correlates , 2002, J. Assoc. Inf. Sci. Technol..

[30]  Jacek Gwizdka,et al.  Analysis and evaluation of query reformulations in different task types , 2010, ASIST.

[31]  Ahmed Hassan Awadallah,et al.  Beyond DCG: user behavior as a predictor of a successful search , 2010, WSDM '10.

[32]  Roberto I. González-Ibáñez,et al.  Evaluating the synergic effect of collaboration in information seeking , 2011, SIGIR.

[33]  Ramana Rao,et al.  The table lens: merging graphical and symbolic representations in an interactive focus + context visualization for tabular information , 1994, CHI '94.

[34]  Ryen W. White,et al.  Predicting query performance using query, result, and user interaction features , 2010, RIAO.

[35]  Ming-Chi Lee,et al.  Using support vector machine with a hybrid feature selection method to the stock trend prediction , 2009, Expert Syst. Appl..

[36]  Bernard J. Jansen,et al.  The seventeen theoretical constructs of information searching and information retrieval , 2010, J. Assoc. Inf. Sci. Technol..

[37]  Pia Borlund,et al.  An investigation of the search behaviour associated with Ingwersen's three types of information needs , 2014, Inf. Process. Manag..

[38]  Yang Song,et al.  Evaluating the effectiveness of search task trails , 2012, WWW.

[39]  Roberto I. González-Ibáñez,et al.  Exploring information seeking processes in collaborative search tasks , 2010, ASIST.

[40]  Chirag Shah,et al.  Coagmento- A Collaborative Information Seeking, Synthesis and Sense-Making Framework (an integrated , 2009 .

[41]  Roberto I. González-Ibáñez,et al.  Spatial context in collaborative information seeking , 2012, J. Inf. Sci..

[42]  Ryen W. White,et al.  Leaving so soon?: understanding and predicting web search abandonment rationales , 2012, CIKM.

[43]  Udo Kruschwitz,et al.  Incorporating Seasonality into Search Suggestions Derived from Intranet Query Logs , 2010, 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology.

[44]  Kalervo Järvelin,et al.  IR research: systems, interaction, evaluation and theories , 2011, SIGF.

[45]  Dmitry Lagun,et al.  Search engine switching detection based on user personal preferences and behavior patterns , 2013, SIGIR.

[46]  ChengXiang Zhai,et al.  Adaptive relevance feedback in information retrieval , 2009, CIKM.

[47]  Amanda Spink,et al.  A user-centered approach to evaluating human interaction with Web search engines: an exploratory study , 2002, Inf. Process. Manag..

[48]  Madely du Preez Information Need: A Theory Connecting Information Search to Knowledge Formation , 2013 .

[49]  Jacek Gwizdka,et al.  Predicting task difficulty for different task types , 2010, ASIST.

[50]  Sholom M. Weiss,et al.  Predictive data mining - a practical guide , 1997 .

[51]  Gary Marchionini,et al.  Report on ACM SIGIR 2006 workshop on evaluating exploratory search systems , 2006, SIGF.

[52]  W. Bruce Croft,et al.  Predicting query performance , 2002, SIGIR '02.

[53]  Ryen W. White,et al.  Supporting exploratory search , 2006 .

[54]  Kai Ming Ting,et al.  Precision and Recall , 2017, Encyclopedia of Machine Learning and Data Mining.

[55]  Yuchen Zhang,et al.  User-click modeling for understanding and predicting search-behavior , 2011, KDD.

[56]  Carol Collier Kuhlthau,et al.  Inside the search process: Information seeking from the user's perspective , 1991, J. Am. Soc. Inf. Sci..

[57]  Ryen W. White,et al.  Search, interrupted: understanding and predicting search task continuation , 2012, SIGIR '12.

[58]  Chirag Shah,et al.  Awareness in collaborative information seeking , 2010, J. Assoc. Inf. Sci. Technol..

[59]  Soo Young Rieh,et al.  Cuisine: Classification using stylistic feature sets and-or name-based feature sets , 2010 .

[60]  Yehuda Koren,et al.  Expediting search trend detection via prediction of query counts , 2013, WSDM.

[61]  Jacek Gwizdka,et al.  Cognitive Load on Web Search Tasks , 2008 .

[62]  Ryen W. White,et al.  Assessing the scenic route: measuring the value of search trails in web logs , 2010, SIGIR.

[63]  Matthew Banta,et al.  What do exploratory searchers look at in a faceted search interface? , 2009, JCDL '09.

[64]  Susan T. Dumais,et al.  Modeling and predicting behavioral dynamics on the web , 2012, WWW.

[65]  Donald M. MacKay,et al.  Information, mechanism and meaning , 1969 .