Why quasi-sets?

Quasi-set theory was developed to deal with collections of indistinguishable objects. In standard mathematics, there are no such kind of entities, for indistinguishability (agreement with respect to all properties) entails numerical identity. The main motivation underlying such a theory is of course quantum physics, for collections of indistinguishable (’identical’ in the physicists’ jargon) particles cannot be regarded as ’sets’ of standard set theories, which are collections of distinguishable objects. In this paper, a rationale for the development of such a theory is presented, motivated by Heinz Post’s claim that indistinguishability of quantum entities should be attributed ’right at the start’.

[1]  Roberto Giuntini,et al.  Quasiset theories for microobjects: A comparison , 1998 .

[2]  S. French,et al.  Identity and individuality in classical and quantum physics , 1989 .

[3]  Felix E. Browder Mathematical Developments Arising from Hilbert Problems, Part 1 , 1976 .

[4]  M. Chiara An approach to intensional semantics , 1987, Synthese.

[5]  M. L. Dalla Chiara,et al.  Individuals, Kinds and Names in Physics , 1993 .

[6]  D. Krause,et al.  Quasi-set theory for bosons and fermions: Quantum distributions , 1999 .

[8]  Elliott Mendelson,et al.  Introduction to Mathematical Logic , 1979 .

[9]  M. Redhead,et al.  Quantum Physics and the Identity of Indiscernibles* , 1988, The British Journal for the Philosophy of Science.

[10]  Décio Krause,et al.  Identity, Indiscernibility, and Philosophical Claims , 2005 .

[11]  Décio Krause,et al.  On a Quasi-Set Theory , 1992, Notre Dame J. Formal Log..

[12]  Newton C. A. da Costa,et al.  An Intensional Schrödinger Logic , 1997, Notre Dame J. Formal Log..

[13]  Décio Krause Axioms for collections of indistinguishable objects , 1996 .

[14]  Giuliano Toraldo di Francia,et al.  The Investigation of the Physical World , 1981 .

[15]  Décio Krause,et al.  Schrödinger logics , 1994, Stud Logica.

[16]  C. J. Keyser Contributions to the Founding of the Theory of Transfinite Numbers , 1916 .

[17]  S. Weinberg,et al.  What Is an Elementary Particle? , 1999 .

[18]  Décio Krause,et al.  Quantum objects are vague objects , 1996 .

[19]  D J Toms An Interpretive Introduction to Quantum Field Theory , 1996 .

[20]  Joan B. Quick,et al.  Philosophy of Mathematics and Natural Science , 1950 .

[21]  Décio Krause,et al.  Vague Identity and Quantum Non-Individuality , 1995 .

[22]  E. J. Lowe,et al.  Vague identity and quantum indeterminacy , 1994 .

[23]  D. Hilbert Mathematical Problems , 2019, Mathematics: People · Problems · Results.

[24]  G. D. Francia,et al.  IDENTITY QUESTIONS FROM QUANTUM THEORY , 1995 .

[25]  Décio Krause,et al.  The logic of quanta , 1999 .

[26]  Michael Barr,et al.  The Emperor's New Mind , 1989 .