Negative Imaginary $H_{2}$ Controller Synthesis Using Nonlinear Optimization

Negative imaginary (NI) systems theory has attracted considerable attention in the area of robust control of highly resonant flexible structures systems. These systems, often naturally, satisfy the NI property. In this paper, we present a control synthesis methodology for NI systems based on a nonlinear optimization techniques. In the presented method, a parametrized library of strictly negative imaginary (SNI) controllers is created and used in a standard numerical nonlinear optimization setup. The SNI controller library contains generic controllers that are widely used in the control highly resonant flexible structures such as positive position feedback (PPF) and integral resonant control (IRC). Sequential quadratic programming (SQP) techniques are used in the numerical optimization problem. The synthesized controller satisfies the SNI property as well as optimizing $H_{2}$ performance. As an application of these results, an example of controlling an Euler-Bernoulli beam with piezo-electric actuator and sensor is presented.

[1]  Alexander Lanzon,et al.  Feedback Control of Negative-Imaginary Systems , 2010, IEEE Control Systems.

[2]  Ian R. Petersen,et al.  Stability Robustness of a Feedback Interconnection of Systems With Negative Imaginary Frequency Response , 2008, IEEE Transactions on Automatic Control.

[3]  Ian R. Petersen,et al.  Stabilization of uncertain negative-imaginary systems via state-feedback control , 2009, 2009 European Control Conference (ECC).

[4]  Michael J. Brennan,et al.  Comparison of negative and positive position feedback control of a flexible structure , 2010 .

[5]  Lorenzo Ntogramatzidis,et al.  Some new results in the theory of negative imaginary systems with symmetric transfer matrix function , 2013, Autom..

[6]  W. Jeong,et al.  Active vibration control of clamped beams using positive position feedback controllers with moment pair , 2012 .

[7]  Ian R. Petersen,et al.  A Negative Imaginary Lemma and the Stability of Interconnections of Linear Negative Imaginary Systems , 2010, IEEE Transactions on Automatic Control.

[8]  W. Harmon Ray,et al.  Some recent applications of distributed parameter systems theory - A survey , 1978, Autom..

[9]  B. Bhikkaji,et al.  Fast scanning using piezoelectric tube nanopositioners: A negative imaginary approach , 2009, 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[10]  Hemanshu R. Pota,et al.  Resonant controllers for smart structures , 2002 .

[11]  Daniel J. Inman,et al.  Comparison of vibration control schemes for a smart antenna , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[12]  Ian R. Petersen,et al.  Enforcing negative imaginary dynamics on mathematical system models , 2013, Int. J. Control.

[13]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[14]  S. O. Reza Moheimani,et al.  Integral resonant control of collocated smart structures , 2007 .

[15]  Tomohiro Suzuki,et al.  Control of large space structures using GPS—modal parameter identification and attitude and deformation estimation , 2003 .

[16]  Bharath Bhikkaji,et al.  A New Scanning Method for Fast Atomic Force Microscopy , 2011, IEEE Transactions on Nanotechnology.

[17]  David G. Wilson,et al.  Augmented Sliding Mode Control for Flexible Link Manipulators , 2002, J. Intell. Robotic Syst..

[18]  J. L. Fanson,et al.  Positive position feedback control for large space structures , 1990 .

[19]  Ian R. Petersen,et al.  Spectral Conditions for Negative Imaginary Systems With Applications to Nanopositioning , 2014, IEEE/ASME Transactions on Mechatronics.

[20]  James Lam,et al.  Output feedback negative imaginary synthesis under structural constraints , 2016, Autom..

[21]  A. Preumont Vibration Control of Active Structures , 1997 .

[22]  Santosh Devasia,et al.  A Survey of Control Issues in Nanopositioning , 2007, IEEE Transactions on Control Systems Technology.

[23]  Hemanshu R. Pota,et al.  Multivariable transfer functions for a slewing piezoelectric laminate beam , 1992, [Proceedings 1992] IEEE International Conference on Systems Engineering.

[24]  Iván M. Díaz,et al.  Integral resonant control scheme for cancelling human‐induced vibrations in light‐weight pedestrian structures , 2012 .

[25]  Donald J. Leo,et al.  Adaptive positive position feedback for actively absorbing energy in acoustic cavities , 2008 .

[26]  Robert Fischl,et al.  Direct position plus velocity feedback control of large flexible space structures , 1991 .

[27]  Jinjun Shan,et al.  Active vibration control using genetic algorithm-based system identification and positive position feedback , 2012 .

[28]  Christopher J. Damaren,et al.  Optimal strictly positive real controllers using direct optimization , 2006, J. Frankl. Inst..

[29]  S O Reza Moheimani,et al.  Making a commercial atomic force microscope more accurate and faster using positive position feedback control. , 2009, The Review of scientific instruments.

[30]  Ian R. Petersen,et al.  Generalizing Negative Imaginary Systems Theory to Include Free Body Dynamics: Control of Highly Resonant Structures With Free Body Motion , 2013, IEEE Transactions on Automatic Control.