Characterisation of a charged particle levitated nano-oscillator

We describe the construction and characterisation of a nano-oscillator formed by a Paul trap. The frequency and temperature stability of the nano-oscillator was measured over several days allowing us to identify the major sources of trap and environmental fluctuations. We measure an overall frequency stability of 2 ppm/hr and a temperature stability of more than 5 hours via the Allan deviation. Importantly, we find that the charge on the nanoscillator is stable over a timescale of at least two weeks and that the mass of the oscillator, can be measured with a 3 % uncertainty. This allows us to distinguish between the trapping of a single nanosphere and a nano-dumbbell formed by a cluster of two nanospheres.

[1]  Stefan Kuhn,et al.  Probing macroscopic quantum superpositions with nanorotors , 2018, New Journal of Physics.

[2]  Peter F. Barker,et al.  Millikelvin cooling of the center-of-mass motion of a levitated nanoparticle , 2017, NanoScience + Engineering.

[3]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[4]  J. Ignacio Cirac,et al.  Optically Levitating Dielectrics in the Quantum Regime: Theory and Protocols , 2010, 1010.3109.

[5]  Kenneth R. Brown,et al.  Loading and characterization of a printed-circuit-board atomic ion trap , 2006, quant-ph/0603142.

[6]  Montana State University,et al.  Cooling the motion of a silica microsphere in a magneto-gravitational trap in ultra-high vacuum , 2018, New Journal of Physics.

[7]  P. Barker,et al.  Testing collapse models with levitated nanoparticles: Detection challenge , 2019, Physical Review A.

[8]  R. Quidant,et al.  Trapping and manipulation of individual nanoparticles in a planar Paul trap , 2016, 1606.04829.

[9]  D. Stick,et al.  Planar ion trap geometry for microfabrication , 2004 .

[10]  P. Alam ‘L’ , 2021, Composites Engineering: An A–Z Guide.

[11]  B. E. Kane,et al.  Cooling of levitated graphene nanoplatelets in high vacuum , 2015, 1503.08170.

[12]  K. Uehara,et al.  Dynamics of a single particle in a Paul trap in the presence of the damping force , 1995 .

[13]  D. E. Changa,et al.  Cavity opto-mechanics using an optically levitated nanosphere , 2009 .

[14]  David J. Wineland,et al.  Minimization of ion micromotion in a Paul trap , 1998 .

[15]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[16]  P. Schwinberg,et al.  Precise measurements of axial, magnetron, cyclotron, and spin-cyclotron-beat frequencies on an isolated 1-meV electron , 1977 .

[17]  P. S. Epstein,et al.  On the Resistance Experienced by Spheres in their Motion through Gases , 1924 .

[18]  James Bateman,et al.  Near-field interferometry of a free-falling nanoparticle from a point-like source , 2013, Nature Communications.

[19]  Christoph Dellago,et al.  Direct measurement of Kramers turnover with a levitated nanoparticle. , 2017, Nature nanotechnology.

[20]  P. Alam ‘T’ , 2021, Composites Engineering: An A–Z Guide.

[21]  Mark G. Raizen,et al.  Millikelvin cooling of an optically trapped microsphere in vacuum , 2011, 1101.1283.

[22]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[23]  O. Benson,et al.  Printed-circuit-board linear Paul trap for manipulating single nano- and microparticles. , 2018, The Review of scientific instruments.

[24]  Qinkai Han,et al.  Optically Levitated Nanodumbbell Torsion Balance and GHz Nanomechanical Rotor. , 2018, Physical review letters.

[25]  John Kitching,et al.  Short-range force detection using optically cooled levitated microspheres. , 2010, Physical review letters.

[26]  G. Mulholland,et al.  Calculating the rotational friction coefficient of fractal aerosol particles in the transition regime using extended Kirkwood-Riseman theory. , 2017, Physical review. E.

[27]  M. Wilde,et al.  Optical Atomic Clocks , 2019, 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC).

[28]  M. A. Rowe,et al.  Heating of trapped ions from the quantum ground state , 2000 .

[29]  T. J. Tate,et al.  Design of a microengineered electrostatic quadrupole lens , 1998 .

[30]  Christoph Dellago,et al.  Direct Measurement of Photon Recoil from a Levitated Nanoparticle. , 2016, Physical review letters.

[31]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[32]  R. March Quadrupole ion traps. , 2009, Mass spectrometry reviews.

[33]  T. S. Monteiro,et al.  Cavity cooling a single charged levitated nanosphere. , 2015, Physical review letters.

[34]  J. Anders,et al.  Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere. , 2013, Nature nanotechnology.

[35]  Lukas Novotny,et al.  Controlling the net charge on a nanoparticle optically levitated in vacuum , 2017, 1704.00169.

[36]  D. E. Chang,et al.  Cavity opto-mechanics using an optically levitated nanosphere , 2009, Proceedings of the National Academy of Sciences.

[37]  G. Milburn,et al.  Macroscopic Quantum Resonators (MAQRO): 2015 update , 2015, 1503.02640.

[38]  G. Glish,et al.  The use of static pressures of heavy gases within a quadrupole ion trap , 2003, Journal of the American Society for Mass Spectrometry.

[39]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.

[40]  R. Quidant,et al.  Accurate Mass Measurement of a Levitated Nanomechanical Resonator for Precision Force-Sensing. , 2018, Nano letters.

[41]  A. Walsh,et al.  Porosity of silica Stöber particles determined by spin-echo small angle neutron scattering. , 2016, Soft matter.

[42]  Jun Ye,et al.  Optical atomic clocks , 2014, 1407.3493.

[43]  John B. Fenn,et al.  Electrospray ionization–principles and practice , 1990 .

[44]  A. Geraci,et al.  Zeptonewton force sensing with nanospheres in an optical lattice , 2016, 1603.02122.

[45]  Lukas Novotny,et al.  Cold Damping of an Optically Levitated Nanoparticle to Microkelvin Temperatures. , 2018, Physical review letters.

[46]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[47]  P. Barker,et al.  Super-resolution imaging of a low frequency levitated oscillator. , 2019, The Review of scientific instruments.

[48]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[49]  Christoph Dellago,et al.  Calibration and energy measurement of optically levitated nanoparticle sensors. , 2017, The Review of scientific instruments.

[50]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[51]  P. Alam ‘G’ , 2021, Composites Engineering: An A–Z Guide.

[52]  E. Serra,et al.  Detection of weak stochastic forces in a parametrically stabilized micro-optomechanical system , 2013, 1312.4867.

[53]  M. N. Shneider,et al.  Cavity cooling of an optically trapped nanoparticle , 2009, 0910.1221.

[54]  S. Schlemmer,et al.  Nondestructive high-resolution and absolute mass determination of single charged particles in a three-dimensional quadrupole trap , 2001 .

[55]  W. Paul Electromagnetic traps for charged and neutral particles , 1990 .

[56]  Y. Lee,et al.  Single-particle mass spectrometry of polystyrene microspheres and diamond nanocrystals. , 2002, Analytical chemistry.

[57]  P. Alam ‘K’ , 2021, Composites Engineering.

[58]  D. Boo,et al.  Single Nanoparticle Ion Trap (SNIT): A Novel Tool for Studying in-situ Dynamics of Single Nanoparticles , 2003 .

[59]  M. Paternostro,et al.  Testing Wavefunction Collapse Models using Parametric Heating of a Trapped Nanosphere , 2015, 1506.08782.

[60]  D. W. Allan,et al.  Statistics of atomic frequency standards , 1966 .

[61]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[62]  Pau Mestres,et al.  Direct loading of nanoparticles under high vacuum into a Paul trap for levitodynamical experiments , 2019, Applied Physics Letters.

[63]  T. S. Monteiro,et al.  Nonlinear Dynamics and Strong Cavity Cooling of Levitated Nanoparticles. , 2015, Physical review letters.

[64]  L. Carlén,et al.  CHICSi—a compact ultra-high vacuum compatible detector system for nuclear reaction experiments at storage rings. I. General structure, mechanics and UHV compatibility , 2003 .