New improvement to Falconer distance set problem in higher dimensions

We show that if a compact set $E\subset \mathbb{R}^d$ has Hausdorff dimension larger than $\frac{d}{2}+\frac{1}{4}-\frac{1}{8d+4}$, where $d\geq 3$, then there is a point $x\in E$ such that the pinned distance set $\Delta_x(E)$ has positive Lebesgue measure. This improves upon bounds of Du-Zhang and Du-Iosevich-Ou-Wang-Zhang in all dimensions $d \ge 3$. We also prove lower bounds for Hausdorff dimension of pinned distance sets when $\dim_H (E) \in (\frac{d}{2} - \frac{1}{4} - \frac{3}{8d+4}, \frac{d}{2}+\frac{1}{4}-\frac{1}{8d+4})$, which improves upon bounds of Harris and Wang-Zheng in dimensions $d \ge 3$.

[1]  Yumeng Ou,et al.  Weighted refined decoupling estimates and application to Falconer distance set problem , 2023, 2309.04501.

[2]  Hong Wang,et al.  Furstenberg sets estimate in the plane , 2023, 2308.08819.

[3]  Andr'as M'ath'e,et al.  Discretised sum-product theorems by Shannon-type inequalities , 2023, 2306.02943.

[4]  Tuomas Orponen,et al.  Projections, Furstenberg sets, and the $ABC$ sum-product problem , 2023, 2301.10199.

[5]  Hong Wang,et al.  Kaufman and Falconer estimates for radial projections and a continuum version of Beck's Theorem , 2022, 2209.00348.

[6]  D. M. Stull Pinned Distance Sets Using Effective Dimension , 2022, ArXiv.

[7]  Pablo Shmerkin,et al.  On the distance sets spanned by sets of dimension $d/2$ in $\mathbb{R}^d$ , 2021, 2112.09044.

[8]  Terence L. J. Harris Low-Dimensional Pinned Distance Sets Via Spherical Averages , 2021, The Journal of Geometric Analysis.

[9]  A. Iosevich,et al.  An improved result for Falconer’s distance set problem in even dimensions , 2020, Mathematische Annalen.

[10]  P. Shmerkin,et al.  A non-linear version of Bourgain’s projection theorem , 2020, Journal of the European Mathematical Society.

[11]  Pablo Shmerkin Improved bounds for the dimensions of planar distance sets , 2018, Journal of Fractal Geometry.

[12]  Bochen Liu Hausdorff dimension of pinned distance sets and the $L^2$-method , 2018, 1810.08127.

[13]  L. Guth,et al.  On Falconer’s distance set problem in the plane , 2018, Inventiones mathematicae.

[14]  Ruixiang Zhang,et al.  Sharp L2 estimates of the Schrödinger maximal function in higher dimensions , 2018, Annals of Mathematics.

[15]  Larry Guth,et al.  Weighted restriction estimates and application to Falconer distance set problem , 2018, American Journal of Mathematics.

[16]  Bochen Liu An L2-identity and pinned distance problem , 2018, Geometric and Functional Analysis.

[17]  Tuomas Orponen On the dimension and smoothness of radial projections , 2017, Analysis & PDE.

[18]  D. Oberlin,et al.  Spherical Means and Pinned Distance Sets , 2014, 1411.0915.

[19]  J. Bourgain On the Erdős-Volkmann and Katz-Tao ring conjectures , 2003 .

[20]  T. Tao,et al.  Some Connections between Falconer's Distance Set Conjecture and Sets of Furstenburg Type , 2001, math/0101195.

[21]  Y. Peres,et al.  Smoothness of projections, Bernoulli convolutions, and the dimension of exceptions , 2000 .

[22]  Jean Bourgain,et al.  Hausdorff dimension and distance sets , 1994 .

[23]  K. Falconer On the Hausdorff dimensions of distance sets , 1985 .

[24]  Zijian Wang,et al.  An improvement of the pinned distance set problem in even dimensions , 2022, Colloquium Mathematicum.

[25]  M. Burak Erdo˜gan A Bilinear Fourier Extension Theorem and Applications to the Distance Set Problem , 2005 .

[26]  T. Wolff Decay of circular means of Fourier transforms of measures , 1999 .