How to Achieve Minimax Expected Kullback-Leibler Distance from an Unknown Finite Distribution
暂无分享,去创建一个
[1] Ronald L. Graham,et al. Concrete mathematics - a foundation for computer science , 1991 .
[2] T. Cover. Admissibility Properties of Gilbert ’ s Encoding for Unknown Source Probabilities , 1998 .
[3] David A. Huffman,et al. A method for the construction of minimum-redundancy codes , 1952, Proceedings of the IRE.
[4] Andrew R. Barron,et al. Asymptotic minimax regret for data compression, gambling, and prediction , 1997, IEEE Trans. Inf. Theory.
[5] R. E. Krichevskii. Universal Compression and Retrieval , 1994 .
[6] Rafail E. Krichevskiy,et al. Laplace's Law of Succession and Universal Encoding , 1998, IEEE Trans. Inf. Theory.
[7] Andrew R. Barron,et al. Minimax redundancy for the class of memoryless sources , 1997, IEEE Trans. Inf. Theory.
[8] Manfred K. Warmuth,et al. Relative Expected Instantaneous Loss Bounds , 2000, J. Comput. Syst. Sci..
[9] C. E. SHANNON,et al. A mathematical theory of communication , 1948, MOCO.
[10] Thomas M. Cover. Admissibility properties or Gilbert's encoding for unknown source probabilities (Corresp.) , 1972, IEEE Trans. Inf. Theory.