Hybrid Segmentation Methods

Image segmentation is the process of identifying and delineating objects in images. It is the most crucial among all computerized operations done on images acquired by using an image acquisition device. Any image visualization, manipulation, and analysis tasks require directly or indirectly image segmentation. In spite of several decades of research [76, 87], this still largely remains an open problem. It is the most challenging among all operations done on images such as interpolation, filtering, and registration. Since these latter operations require object knowledge in one way or another, they all depend to some extent on image segmentation. Methods for performing segmentations vary widely depending on the specific application, imaging modality, body region and other factors. There is currently no single segmentation method that can yield acceptable results

[1]  Supun Samarasekera,et al.  Fuzzy connectedness and object definition , 1995, Medical Imaging.

[2]  J. Sethian,et al.  A Fast Level Set Method for Propagating Interfaces , 1995 .

[3]  Marie-Pierre Jolly,et al.  Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[4]  M. Brandt,et al.  Estimation of CSF, white and gray matter volumes in hydrocephalic children using fuzzy clustering of MR images. , 1994, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[5]  Peter E. Hart,et al.  Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.

[6]  James M. Keller,et al.  Snakes on the Watershed , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Anthony J. Yezzi,et al.  A geometric snake model for segmentation of medical imagery , 1997, IEEE Transactions on Medical Imaging.

[8]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[9]  Jake K. Aggarwal,et al.  The Integration of Image Segmentation Maps using Region and Edge Information , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Ugo Montanari,et al.  On the optimal detection of curves in noisy pictures , 1971, CACM.

[11]  Demetri Terzopoulos,et al.  Regularization of Inverse Visual Problems Involving Discontinuities , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Richard M. Leahy,et al.  An Optimal Graph Theoretic Approach to Data Clustering: Theory and Its Application to Image Segmentation , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Jerry L. Prince,et al.  Snakes, shapes, and gradient vector flow , 1998, IEEE Trans. Image Process..

[14]  James S. Duncan,et al.  Deformable boundary finding influenced by region homogeneity , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[15]  Dimitris N. Metaxas,et al.  Image Segmentation Based on the Integration of Markov Random Fields and Deformable Models , 2000, MICCAI.

[16]  Manuel G. Penedo,et al.  Computer-aided diagnosis: a neural-network-based approach to lung nodule detection , 1998, IEEE Transactions on Medical Imaging.

[17]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[18]  Theodosios Pavlidis,et al.  Integrating region growing and edge detection , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[19]  Demetri Terzopoulos,et al.  Computer-assisted registration, segmentation, and 3D reconstruction from images of neuronal tissue sections , 1994, IEEE Trans. Medical Imaging.

[20]  James S. Duncan,et al.  Deformable boundary finding in medical images by integrating gradient and region information , 1996, IEEE Trans. Medical Imaging.

[21]  C Imelińska,et al.  Semi-automated color segmentation of anatomical tissue. , 2000, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[22]  Yan Zhu,et al.  Computerized tumor boundary detection using a Hopfield neural network , 1997, IEEE Transactions on Medical Imaging.

[23]  M Braun,et al.  Image segmentation by a deformable contour model incorporating region analysis , 1997, Physics in medicine and biology.

[24]  Max A. Viergever,et al.  A discrete dynamic contour model , 1995, IEEE Trans. Medical Imaging.

[25]  William A. Barrett,et al.  Intelligent scissors for image composition , 1995, SIGGRAPH.

[26]  Roderick Urquhart,et al.  Graph theoretical clustering based on limited neighbourhood sets , 1982, Pattern Recognit..

[27]  Jayaram K. Udupa,et al.  Segmentation of 3D objects using live wire , 1997, Medical Imaging.

[28]  M.C. Clark,et al.  MRI segmentation using fuzzy clustering techniques , 1994, IEEE Engineering in Medicine and Biology Magazine.

[29]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Kaleem Siddiqi,et al.  Area and length minimizing flows for shape segmentation , 1998, IEEE Trans. Image Process..

[31]  John Yen,et al.  Automatic system for brain MRI analysis using a novel combination of fuzzy rule-based and automatic clustering techniques , 1995, Medical Imaging.

[32]  Supun Samarasekera,et al.  Fuzzy Connectedness and Object Definition: Theory, Algorithms, and Applications in Image Segmentation , 1996, CVGIP Graph. Model. Image Process..

[33]  Dimitris N. Metaxas Physics-Based Deformable Models: Applications to Computer Vision, Graphics, and Medical Imaging , 1996 .

[34]  Kari Saarinen Color image segmentation by a watershed algorithm and region adjacency graph processing , 1994, Proceedings of 1st International Conference on Image Processing.

[35]  Hsun K. Liu,et al.  Two and three dimensional boundary detection , 1977 .

[36]  Dimitris N. Metaxas,et al.  Image-based ventricular blood flow analysis , 1998 .

[37]  Jayaram K. Udupa,et al.  Optimum Image Thresholding via Class Uncertainty and Region Homogeneity , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Rachid Deriche,et al.  Geodesic Active Regions and Level Set Methods for Supervised Texture Segmentation , 2002, International Journal of Computer Vision.

[39]  Rachid Deriche,et al.  Geodesic Active Regions: A New Framework to Deal with Frame Partition Problems in Computer Vision , 2002, J. Vis. Commun. Image Represent..

[40]  Laurent D. Cohen,et al.  Finite-Element Methods for Active Contour Models and Balloons for 2-D and 3-D Images , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  S. Resnick,et al.  An image-processing system for qualitative and quantitative volumetric analysis of brain images. , 1998, Journal of computer assisted tomography.

[42]  Steven W. Zucker,et al.  Region growing: Childhood and adolescence* , 1976 .

[43]  S Vinitski,et al.  Optimization of tissue segmentation of brain MR images based on multispectral 3D feature maps. , 1999, Magnetic resonance imaging.

[44]  Alok Gupta,et al.  Dynamic Programming for Detecting, Tracking, and Matching Deformable Contours , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  Montse Pardàs,et al.  Hierarchical morphological segmentation for image sequence coding , 1994, IEEE Trans. Image Process..

[46]  Rachid Deriche,et al.  Geodesic Active Contours and Level Sets for the Detection and Tracking of Moving Objects , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[47]  Lawrence H. Staib,et al.  An integrated approach for surface finding in medical images , 1996, Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis.

[48]  Moncef Gabbouj,et al.  Robust Image Contour Detection by Watershed Transformation , 1997 .

[49]  Noël Bonnet,et al.  Two Methods for Semi-automatic Image Segmentation based on Fuzzy Connectedness and Watersheds , 2001, VIIP.

[50]  Alan L. Yuille,et al.  Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[51]  Paul D. Clayton,et al.  DYNAMIC SEARCH ALGORITHMS IN LEFT VENTRICULAR BORDER RECOGNITION AND ANALYSIS OF CORONARY ARTERIES. , 1984 .

[52]  Yihong Gong,et al.  Detection of Regions Matching Specified Chromatic Features , 1995, Comput. Vis. Image Underst..

[53]  Timothy F. Cootes,et al.  Active Appearance Models , 1998, ECCV.

[54]  Milan Sonka,et al.  Segmentation and interpretation of MR brain images. An improved active shape model , 1998, IEEE Transactions on Medical Imaging.

[55]  Ahmed S. Abutableb Automatic thresholding of gray-level pictures using two-dimensional entropy , 1989 .

[56]  James C. Bezdek,et al.  A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain , 1992, IEEE Trans. Neural Networks.

[57]  A. Bonaert Introduction to the theory of Fuzzy subsets , 1977, Proceedings of the IEEE.

[58]  Edward L. Chaney,et al.  Segmentation of Medical Image Objects Using Deformable Shape Loci , 1996, IPMI.

[59]  Edwin N. Cook,et al.  Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks , 1997, IEEE Transactions on Medical Imaging.

[60]  Roberto Scopigno,et al.  Discretized Marching Cubes , 1994, Proceedings Visualization '94.

[61]  L O Hall,et al.  Review of MR image segmentation techniques using pattern recognition. , 1993, Medical physics.

[62]  Azriel Rosenfeld,et al.  Multidimensional Edge Detection by Hypersurface Fitting , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[63]  Lawrence O. Hall,et al.  Automatic tumor segmentation using knowledge-based techniques , 1998, IEEE Transactions on Medical Imaging.

[64]  James S. Duncan,et al.  Boundary Finding with Parametrically Deformable Models , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[65]  Bruno M. Carvalho,et al.  Multiseeded Segmentation Using Fuzzy Connectedness , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[66]  J. Udupa,et al.  Iterative relative fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation , 2000, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis. MMBIA-2000 (Cat. No.PR00737).

[67]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[68]  G. Hamarneh,et al.  Combining snakes and active shape models for segmenting the human left ventricle in echocardiographic images , 2000, Computers in Cardiology 2000. Vol.27 (Cat. 00CH37163).

[69]  Jerry L Prince,et al.  Current methods in medical image segmentation. , 2000, Annual review of biomedical engineering.

[70]  Isabelle Herlin,et al.  A deformable region model using stochastic processes applied to echocardiographic images , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[71]  A W Toga,et al.  Quantification of white matter and gray matter volumes from T1 parametric images using fuzzy classifiers , 1996, Journal of magnetic resonance imaging : JMRI.

[72]  Heinz-Otto Peitgen,et al.  Local-cost computation for efficient segmentation of 3D objects with live wire , 2001, SPIE Medical Imaging.

[73]  P.K Sahoo,et al.  A survey of thresholding techniques , 1988, Comput. Vis. Graph. Image Process..

[74]  S. Beucher Use of watersheds in contour detection , 1979 .

[75]  L. Axel,et al.  Intensity correction in surface-coil MR imaging. , 1987, AJR. American journal of roentgenology.

[76]  Jayaram K. Udupa,et al.  Hybrid Segmentation of Anatomical Data , 2001, MICCAI.

[77]  Kannan,et al.  ON IMAGE SEGMENTATION TECHNIQUES , 2022 .

[78]  Mohan M. Trivedi,et al.  Low-Level Segmentation of Aerial Images with Fuzzy Clustering , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[79]  Jayaram K. Udupa,et al.  User-Steered Image Segmentation Paradigms: Live Wire and Live Lane , 1998, Graph. Model. Image Process..

[80]  Timothy F. Cootes,et al.  The Use of Active Shape Models for Locating Structures in Medical Images , 1993, IPMI.

[81]  Samuel H. Duncan,et al.  Integration Of Boundary Finding And Regionbased Segmentation Using Game Theory , 1995 .

[82]  Jerry L. Prince,et al.  Generalized gradient vector flow external forces for active contours , 1998, Signal Process..

[83]  Jayaram K. Udupa,et al.  Hybrid segmentation of the Visible Human data , 2000 .

[84]  Demetri Terzopoulos,et al.  Deformable models in medical image analysis: a survey , 1996, Medical Image Anal..

[85]  Dimitris N. Metaxas,et al.  Image segmentation based on the integration of pixel affinity and deformable models , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[86]  Dimitris N. Metaxas,et al.  Automated 3D Segmentation Using Deformable Models and Fuzzy Affinity , 1997, IPMI.

[87]  M L Mendelsohn,et al.  THE ANALYSIS OF CELL IMAGES * , 1966, Annals of the New York Academy of Sciences.

[88]  Andrew F. Laine,et al.  Improving statistics for hybrid segmentation of high-resolution multichannel images , 2002, SPIE Medical Imaging.

[89]  Jayaram K. Udupa,et al.  An ultra-fast user-steered image segmentation paradigm: live wire on the fly , 2000, IEEE Transactions on Medical Imaging.

[90]  Timothy F. Cootes,et al.  Comparing Active Shape Models with Active Appearance Models , 1999, BMVC.

[91]  James S. Duncan,et al.  Deformable Fourier models for surface finding in 3-D images , 1992, Other Conferences.

[92]  Dzung L. Pham,et al.  Spatial Models for Fuzzy Clustering , 2001, Comput. Vis. Image Underst..

[93]  Jerry L. Prince,et al.  An Automated Technique for Statistical Characterization of Brain Tissues in Magnetic Resonance Imaging , 1997, Int. J. Pattern Recognit. Artif. Intell..

[94]  L G Nyúl,et al.  On standardizing the MR image intensity scale , 1999, Magnetic resonance in medicine.

[95]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[96]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[97]  Rémi Ronfard,et al.  Region-based strategies for active contour models , 1994, International Journal of Computer Vision.

[98]  J. Chassery,et al.  Segmentation and measurement based on 3D Voronoi diagram: application to confocal microscopy. , 1993, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[99]  Jayaram K. Udupa,et al.  Vectorial scale-based fuzzy-connected image segmentation , 2006, Comput. Vis. Image Underst..

[100]  Jerry L. Prince,et al.  Adaptive fuzzy segmentation of magnetic resonance images , 1999, IEEE Transactions on Medical Imaging.

[101]  Milan Sonka,et al.  Multistage hybrid active appearance model matching: segmentation of left and right ventricles in cardiac MR images , 2001, IEEE Transactions on Medical Imaging.

[102]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[103]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[104]  V. Spitzer,et al.  The visible human male: a technical report. , 1996, Journal of the American Medical Informatics Association : JAMIA.

[105]  Jayaram K. Udupa,et al.  Relative Fuzzy Connectedness among Multiple Objects: Theory, Algorithms, and Applications in Image Segmentation , 2001, Comput. Vis. Image Underst..

[106]  Demetri Terzopoulos,et al.  A dynamic finite element surface model for segmentation and tracking in multidimensional medical images with application to cardiac 4D image analysis. , 1995, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[107]  Jayaram K. Udupa,et al.  Methodology for evaluating image-segmentation algorithms , 2002, SPIE Medical Imaging.

[108]  Baba C. Vemuri,et al.  Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[109]  TING-CHUEN PONG,et al.  Experiments in segmentation using a facet model region grower , 1984, Comput. Vis. Graph. Image Process..

[110]  Jayaram K. Udupa,et al.  Fuzzy Connected Object Delineation: Axiomatic Path Strength Definition and the Case of Multiple Seeds , 2001, Comput. Vis. Image Underst..

[111]  Xiaobo Li,et al.  Adaptive image region-growing , 1994, IEEE Trans. Image Process..

[112]  Jayaram K. Udupa,et al.  Interactive segmentation and boundary surface formation for 3-D digital images , 1982, Comput. Graph. Image Process..

[113]  Josef Kittler,et al.  Automatic watershed segmentation of randomly textured color images , 1997, IEEE Trans. Image Process..

[114]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[115]  Berkman Sahiner,et al.  Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images , 1996, IEEE Trans. Medical Imaging.

[116]  Jayaram K. Udupa,et al.  Scale-Based Fuzzy Connected Image Segmentation: Theory, Algorithms, and Validation , 2000, Comput. Vis. Image Underst..

[117]  Jayaram K. Udupa,et al.  Segmentation and Evaluation of Adipose Tissue from Whole Body MRI Scans , 2003, MICCAI.