A SURVEY ON HEDETNIEMI'S CONJECTURE

More than 30 years ago, Hedetniemi made a conjecture which says that the categorical product of two n-chromatic graphs is still n-chromatic. The conjecture is still open, despite many dierent approaches from dierent point of views. This article surveys methods and partial results; and discuss problems related to or motivated by this conjecture.

[1]  Huishan Zhou Multiplicativity. Part I. Variations, multiplicative graphs, and digraphs , 1991, J. Graph Theory.

[2]  Claude Berge,et al.  Graphs and Hypergraphs , 2021, Clustering.

[3]  J. Nesetril,et al.  Homomorphisms of graphs and of their orientations , 1978 .

[4]  Jaroslav Nesetril,et al.  On classes of relations and graphs determined by subobjects and factorobjects , 1978, Discret. Math..

[5]  F. Sterboul,et al.  On the chromatic number of the direct product of hypergraphs , 1974 .

[6]  Pavol Hell,et al.  On homomorphisms to acyclic local tournaments , 1995, J. Graph Theory.

[7]  L. Lovász,et al.  Applications of product colouring , 1974 .

[8]  Jørgen Bang-Jensen,et al.  The effect of two cycles on the complexity of colourings by directed graphs , 1989, Discret. Appl. Math..

[9]  András Hajnal The chromatic number of the product of two ℵ1-chromatic graphs can be countable , 1985 .

[10]  Xuding Zhu,et al.  Homomorphisms to oriented cycles , 1993, Comb..

[11]  G. Hahn,et al.  Graph homomorphisms: structure and symmetry , 1997 .

[12]  Donald J. Miller The Categorical Product of Graphs , 1968, Canadian Journal of Mathematics.

[13]  Norbert Sauer,et al.  An approach to hedetniemi's conjecture , 1992, J. Graph Theory.

[14]  Sandi Klavzar,et al.  Coloring graph products - A survey , 1996, Discret. Math..

[15]  Dwight Duffus,et al.  On the chromatic number of the product of graphs , 1985, J. Graph Theory.

[16]  Dwight Duffus,et al.  Lattices arising in categorial investigations of Hedetniemi's conjecture , 1996, Discret. Math..

[17]  Gert Sabidussi,et al.  Graph multiplication , 1959 .

[18]  Svatopluk Poljak Coloring digraphs by iterated antichains , 1991 .

[19]  Xuding Zhu,et al.  The Existence of Homomorphisms to Oriented Cycles , 1995, SIAM J. Discret. Math..

[20]  Xuding Zhu A simple proof of the multiplicativity of directed cycles of prime power length , 1992, Discret. Appl. Math..

[21]  Xuding Zhu,et al.  Multiplicative posets , 1991 .

[22]  Xuding Zhu,et al.  Multiplicativity of Oriented Cycles , 1994, J. Comb. Theory, Ser. B.

[23]  Béla Bollobás,et al.  Uniquely Colourable Graphs with Large Girth , 1976, Canadian Journal of Mathematics.

[24]  Jaroslav Nesetril,et al.  Images of Rigid Digraphs , 1991, Eur. J. Comb..

[25]  Stefan A. Burr,et al.  On unavoidable digraphs in orientations of graphs , 1987, J. Graph Theory.

[26]  P. Hell,et al.  GRAPHS WITH FORBIDDEN HOMOMORPHIC IMAGES , 1979 .

[27]  Xuding Zhu,et al.  Homomorphisms to oriented paths , 1994, Discret. Math..

[28]  Xuding Zhu A Polynomial Algorithm for Homomorphisms to Oriented Cycles , 1995, J. Algorithms.

[29]  P. Erdös,et al.  ON GRAPHS OF RAMSEY TYPE , 1976 .

[30]  Huishan Zhou Multiplicativity. Part II. Nonmultiplicative digraphs and characterization of oriented paths , 1991, J. Graph Theory.

[31]  Roger C. Entringer,et al.  Arc Colorings of Digraphs , 1972 .

[32]  Svatopluk Poljak,et al.  On the arc-chromatic number of a digraph , 1981, J. Comb. Theory, Ser. B.

[33]  Xuding Zhu,et al.  Multiplicativity of acyclic local tournaments , 1997, Comb..

[34]  Emo Welzl Color-Families are Dense , 1982, Theor. Comput. Sci..

[35]  L. Lovász Operations with structures , 1967 .

[36]  Emo Welzl,et al.  Symmetric graphs and interpretations , 1984, J. Comb. Theory, Ser. B.

[37]  Xuding Zhu Star chromatic numbers and products of graphs , 1992, J. Graph Theory.

[38]  Gary MacGillivray,et al.  Hereditarily hard H-colouring problems , 1995, Discret. Math..

[39]  M. Borowiecki On chromatic number of products of two graphs , 1972 .

[40]  Hui-Shan Zhou Homomorphism properties of graph products , 1988 .

[41]  Jaroslav Nesetril,et al.  On the complexity of H-coloring , 1990, J. Comb. Theory, Ser. B.

[42]  Huishan Zhou Multiplicativity. Part 1. variation, multiplicative graphs and digraphs: variations, multiplicative graphs, and digraphs , 1991 .

[43]  Gary MacGillivray,et al.  On the complexity of colouring by superdigraphs of bipartite graphs , 1992, Discret. Math..

[44]  Daniel Turzík A note on chromatic number of direct product of graphs , 1983 .

[45]  Norbert Sauer,et al.  The chromatic number of the product of two 4-chromatic graphs is 4 , 1985, Comb..

[46]  Gary MacGillivray,et al.  The Complexity of Colouring by Semicomplete Digraphs , 1988, SIAM J. Discret. Math..

[47]  Pavol Hell,et al.  AN INTRODUCTION TO THE CATEGORY OF GRAPHS * , 1979 .

[48]  Béla Bollobás,et al.  Uniquely colorable graphs , 1978, J. Comb. Theory, Ser. B.

[49]  A. Vince,et al.  Star chromatic number , 1988, J. Graph Theory.

[50]  Pavol Hell,et al.  On multiplicative graphs and the product conjecture , 1988, Comb..