The oxidation behaviour of the 9 % Cr steel P92in CO2- and H2O-rich gases relevant to oxyfuel environments

Abstract In oxyfuel plants metallic heat exchanging components will be subjected to service environments containing high amounts of CO2 and water vapour. In the present paper, the oxidation behaviour of the ferritic/martensitic 9 % Cr steel P92 was studied in a model gas mixture containing 70 % CO2-30 % H2O in the temperature range 550 – 650 °C. The results were compared with the behaviour in air, Ar–CO2 and Ar–H2O. In the CO2- and/or H2O-rich gases, the steel formed iron-rich oxide scales which possess substantially higher growth rates than the Cr-rich surface scales formed during air exposure. The iron-rich oxide scales are formed as a result of a decreased flux of chromium in the bulk alloy toward the surface. This is the result of enhanced internal oxidation of chromium in the H2O-containing gases and carburisation in the CO2 gases. The oxide scales allow molecular transport of CO2 towards the metallic surface, resulting in carburisation of the alloy. The presence of water vapour induced buckling in the outer haematite layer, apparently as a result of compressive oxide growth stresses. Buckling did not occur in the H2O-free gas. This has been discussed in terms of the potential for H2O to increase growth stresses and accelerate crack propagation. The oxidation rates in CO2–H2O do not seem to be higher than those observed in flue gases of conventional fossil fuel fired power plants.

[1]  H. Grabke,et al.  Aufkohlung von chrom-nickel-eisen-stählen in der kohlenstoffpackung , 1976 .

[2]  N. Komai,et al.  Japanese experience with steam oxidation of advanced heat-resistant steel tubes in power boilers , 2005 .

[3]  R. Meussner,et al.  Carburization of Fe‐Cr Alloys During Oxidation in Dry Carbon Dioxide , 1967 .

[4]  F. Pettit,et al.  Some water vapor effects during the oxidation of alloys that are α-Al2O3 formers , 2003 .

[5]  W. Quadakkers,et al.  The effect of water vapor on the oxidation behavior of 9%Cr steels in simulated combustion gases , 1998 .

[6]  Jan-Erik Svensson,et al.  Evidence for Chromium Evaporation Influencing the Oxidation of 304L: The Effect of Temperature and Flow Rate , 2002 .

[7]  Willem J. Quadakkers,et al.  Anomalous temperature dependence of oxidation kinetics during steam oxidation of ferritic steels in the temperature range 550–650 °C , 2004 .

[8]  F. Pettit,et al.  Corrosion of metals and alloys in mixed gas environments at elevated temperatures , 1980 .

[9]  L. Singheiser,et al.  Enhanced internal oxidation as trigger for breakaway oxidation of Fe–Cr alloys in gases containing water vapor , 2007 .

[10]  G. H. Meier,et al.  Corrosion of iron-, nickel-, and cobalt-base alloys in atmospheres containing carbon and oxygen , 1982 .

[11]  Hugh Evans,et al.  Spallation models and their relevance to steam-grown oxides , 2005 .

[12]  T. Michalske,et al.  A Molecular Mechanism for Stress Corrosion in Vitreous Silica , 1983 .

[13]  John R. Nicholls,et al.  High temperature corrosion , 1990 .

[14]  Sheldon M. Wiederhorn,et al.  Influence of Water Vapor on Crack Propagation in Soda‐Lime Glass , 1967 .

[15]  A. Rahmel,et al.  Einfluß von Wasserdampf und Kohlendioxyd auf die Oxydation von Eisen-Silicium-Legierungen in Sauerstoff bei Temperaturen von 750 bis 1050°C , 1965 .

[16]  A. Rahmel,et al.  Einfluss von wasserdampf und kohlendioxyd auf die oxydation von eisen in sauerstoff bei hohen temperaturen , 1965 .

[17]  R. Janakiraman,et al.  The effect of water vapor on the oxidation of alloys that develop alumina scales for protection , 1999 .

[18]  Jeffery A. Colwell,et al.  Reactions of Fe-Cr and Ni-Cr alloys in CO/CO2 gases at 850 and 950 °C , 1986 .

[19]  L. Singheiser,et al.  The Effect of Water-Vapor Content and Gas Flow Rate on the Oxidation Mechanism of a 10%Cr-Ferritic Steel in Ar-H2O Mixtures , 2005 .

[20]  W. Quadakkers,et al.  Steam oxidation of ferritic steels – laboratory test kinetic data , 2005 .

[21]  Toni Pikkarainen,et al.  Oxyfuel concept development , 2007 .

[22]  A. Rahmel Über den Einfluß von Wasserdampf und Kohlendioxyd auf die Oxydation von Eisen und Eisenlegierungen bei hohen Temperaturen , 1965 .

[23]  J. Antill,et al.  Oxidation of mild and low-alloy steels in CO2 based atmospheres , 1968 .

[24]  F. Ajersch,et al.  Oxidation of low carbon steel in multicomponent gases: Part I. Reaction mechanisms during isothermal oxidation , 1997 .

[25]  A. Elschner,et al.  Composition and growth mechanisms of alumina scales on FeCrAl-based alloys determined by SNMS , 1991 .

[26]  R. Rapp The transition from internal to external oxidation and the formation of interruption bands in silver-indium alloys , 1961 .

[27]  M. Schütze,et al.  Parameters determining the breakaway oxidation behaviour of ferritic martensitic 9%Cr steels in environments containing H2O , 2004 .

[28]  D. Young,et al.  Carburization resistance of nickel-base, heat-resisting alloys , 2007 .

[29]  W. Quadakkers,et al.  The Effect of Water Vapor on Selective Oxidation of Fe–Cr Alloys , 2008 .

[30]  R. Bredesen,et al.  On the oxidation of iron in CO2+CO gas mixtures: I. Scale morphology and reaction kinetics , 1990 .

[31]  G. B. Gibbs A model for mild steel oxidation in CO2 , 1973 .

[32]  L. Singheiser,et al.  Enhanced oxidation of the 9%Cr steel P91 in water vapour containing environments , 2006 .

[33]  Irving Langmuir,et al.  The Vapor Pressure of Metallic Tungsten , 1913 .

[34]  RajenderKumar Gupta,et al.  Oxy-fuel combustion technology for coal-fired power generation , 2005 .

[35]  J. Castle,et al.  Gas phase transport in the oxidation of Fe and steel , 1969 .

[36]  A. Rahmel,et al.  The conversion of chromium oxide to chromium carbide , 1981 .

[37]  W. J. Quadakkers,et al.  Implications of steam oxidation for the service life of high-strength martensitic steel components in high-temperature plant , 2007 .

[38]  L. Singheiser,et al.  Effect of Alloying Additions in Ferritic 9-12%Cr Steels on the Temperature Dependence of the Steam Oxidation Resistance , 2004 .

[39]  M. Limbäck,et al.  Gas phase analysis of CO interactions with solid surfaces at high temperatures , 2004 .

[40]  X. G. Zheng,et al.  High-temperature corrosion of Cr2O3-forming alloys in CO-CO2-N2 atmospheres , 1994 .

[41]  P. J. Ennis,et al.  Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant , 1997 .

[42]  W. J. Quadakkers,et al.  Mechanisms of steam oxidation in high strength martensitic steels , 2007 .

[43]  S. Wiederhorn Moisture assisted crack growth in ceramics , 1968 .