The oxidation behaviour of the 9 % Cr steel P92in CO2- and H2O-rich gases relevant to oxyfuel environments
暂无分享,去创建一个
Willem J. Quadakkers | Lorenz Singheiser | T. Olszewski | L. Singheiser | W. Quadakkers | G. H. Meier | J. P. Abellán | T. Olszewski | Gerald H. Meier | Javier Pirón Abellán | Tomasz Olszewski
[1] H. Grabke,et al. Aufkohlung von chrom-nickel-eisen-stählen in der kohlenstoffpackung , 1976 .
[2] N. Komai,et al. Japanese experience with steam oxidation of advanced heat-resistant steel tubes in power boilers , 2005 .
[3] R. Meussner,et al. Carburization of Fe‐Cr Alloys During Oxidation in Dry Carbon Dioxide , 1967 .
[4] F. Pettit,et al. Some water vapor effects during the oxidation of alloys that are α-Al2O3 formers , 2003 .
[5] W. Quadakkers,et al. The effect of water vapor on the oxidation behavior of 9%Cr steels in simulated combustion gases , 1998 .
[6] Jan-Erik Svensson,et al. Evidence for Chromium Evaporation Influencing the Oxidation of 304L: The Effect of Temperature and Flow Rate , 2002 .
[7] Willem J. Quadakkers,et al. Anomalous temperature dependence of oxidation kinetics during steam oxidation of ferritic steels in the temperature range 550–650 °C , 2004 .
[8] F. Pettit,et al. Corrosion of metals and alloys in mixed gas environments at elevated temperatures , 1980 .
[9] L. Singheiser,et al. Enhanced internal oxidation as trigger for breakaway oxidation of Fe–Cr alloys in gases containing water vapor , 2007 .
[10] G. H. Meier,et al. Corrosion of iron-, nickel-, and cobalt-base alloys in atmospheres containing carbon and oxygen , 1982 .
[11] Hugh Evans,et al. Spallation models and their relevance to steam-grown oxides , 2005 .
[12] T. Michalske,et al. A Molecular Mechanism for Stress Corrosion in Vitreous Silica , 1983 .
[13] John R. Nicholls,et al. High temperature corrosion , 1990 .
[14] Sheldon M. Wiederhorn,et al. Influence of Water Vapor on Crack Propagation in Soda‐Lime Glass , 1967 .
[15] A. Rahmel,et al. Einfluß von Wasserdampf und Kohlendioxyd auf die Oxydation von Eisen-Silicium-Legierungen in Sauerstoff bei Temperaturen von 750 bis 1050°C , 1965 .
[16] A. Rahmel,et al. Einfluss von wasserdampf und kohlendioxyd auf die oxydation von eisen in sauerstoff bei hohen temperaturen , 1965 .
[17] R. Janakiraman,et al. The effect of water vapor on the oxidation of alloys that develop alumina scales for protection , 1999 .
[18] Jeffery A. Colwell,et al. Reactions of Fe-Cr and Ni-Cr alloys in CO/CO2 gases at 850 and 950 °C , 1986 .
[19] L. Singheiser,et al. The Effect of Water-Vapor Content and Gas Flow Rate on the Oxidation Mechanism of a 10%Cr-Ferritic Steel in Ar-H2O Mixtures , 2005 .
[20] W. Quadakkers,et al. Steam oxidation of ferritic steels – laboratory test kinetic data , 2005 .
[21] Toni Pikkarainen,et al. Oxyfuel concept development , 2007 .
[22] A. Rahmel. Über den Einfluß von Wasserdampf und Kohlendioxyd auf die Oxydation von Eisen und Eisenlegierungen bei hohen Temperaturen , 1965 .
[23] J. Antill,et al. Oxidation of mild and low-alloy steels in CO2 based atmospheres , 1968 .
[24] F. Ajersch,et al. Oxidation of low carbon steel in multicomponent gases: Part I. Reaction mechanisms during isothermal oxidation , 1997 .
[25] A. Elschner,et al. Composition and growth mechanisms of alumina scales on FeCrAl-based alloys determined by SNMS , 1991 .
[26] R. Rapp. The transition from internal to external oxidation and the formation of interruption bands in silver-indium alloys , 1961 .
[27] M. Schütze,et al. Parameters determining the breakaway oxidation behaviour of ferritic martensitic 9%Cr steels in environments containing H2O , 2004 .
[28] D. Young,et al. Carburization resistance of nickel-base, heat-resisting alloys , 2007 .
[29] W. Quadakkers,et al. The Effect of Water Vapor on Selective Oxidation of Fe–Cr Alloys , 2008 .
[30] R. Bredesen,et al. On the oxidation of iron in CO2+CO gas mixtures: I. Scale morphology and reaction kinetics , 1990 .
[31] G. B. Gibbs. A model for mild steel oxidation in CO2 , 1973 .
[32] L. Singheiser,et al. Enhanced oxidation of the 9%Cr steel P91 in water vapour containing environments , 2006 .
[33] Irving Langmuir,et al. The Vapor Pressure of Metallic Tungsten , 1913 .
[34] RajenderKumar Gupta,et al. Oxy-fuel combustion technology for coal-fired power generation , 2005 .
[35] J. Castle,et al. Gas phase transport in the oxidation of Fe and steel , 1969 .
[36] A. Rahmel,et al. The conversion of chromium oxide to chromium carbide , 1981 .
[37] W. J. Quadakkers,et al. Implications of steam oxidation for the service life of high-strength martensitic steel components in high-temperature plant , 2007 .
[38] L. Singheiser,et al. Effect of Alloying Additions in Ferritic 9-12%Cr Steels on the Temperature Dependence of the Steam Oxidation Resistance , 2004 .
[39] M. Limbäck,et al. Gas phase analysis of CO interactions with solid surfaces at high temperatures , 2004 .
[40] X. G. Zheng,et al. High-temperature corrosion of Cr2O3-forming alloys in CO-CO2-N2 atmospheres , 1994 .
[41] P. J. Ennis,et al. Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant , 1997 .
[42] W. J. Quadakkers,et al. Mechanisms of steam oxidation in high strength martensitic steels , 2007 .
[43] S. Wiederhorn. Moisture assisted crack growth in ceramics , 1968 .