A methodology for designing flexible multi-generation systems

An FMG (flexible multi-generation system) consists of integrated and flexibly operated facilities that provide multiple links between the various layers of the energy system. FMGs may facilitate integration and balancing of fluctuating renewable energy sources in the energy system in a cost- and energy-efficient way, thereby playing an important part in smart energy systems.

[1]  P. Meibom,et al.  Long-term affected energy production of waste to energy technologies identified by use of energy system analysis. , 2010, Waste management.

[2]  Nikolaos V. Sahinidis,et al.  Global optimization of mixed-integer nonlinear programs: A theoretical and computational study , 2004, Math. Program..

[3]  K. Gernaey,et al.  Good modeling practice for PAT applications: Propagation of input uncertainty and sensitivity analysis , 2009, Biotechnology progress.

[4]  François Maréchal,et al.  Multi-Objective, Multi-Period Optimization of Biomass Conversion Technologies Using Evolutionary Algorithms and Mixed Integer Linear Programming (MILP) , 2013 .

[5]  Yang Chen,et al.  Optimal Design and Operation of Energy Polygeneration Systems by , 2012 .

[6]  Thomas A. Adams,et al.  Optimal Design and Operation of Flexible Energy Polygeneration Systems , 2011 .

[7]  G. Andersson,et al.  Towards multi-source multi-product energy systems , 2007 .

[8]  G. Andersson,et al.  Energy hubs for the future , 2007, IEEE Power and Energy Magazine.

[9]  Pierluigi Mancarella,et al.  Distributed multi-generation: A comprehensive view , 2009 .

[10]  Dimitrios I. Gerogiorgis,et al.  Modeling and optimization of polygeneration energy systems , 2007 .

[11]  François Maréchal,et al.  Co-production of hydrogen and electricity from lignocellulosic biomass: Process design and thermo-economic optimization , 2012 .

[12]  Efstratios N. Pistikopoulos,et al.  Polygeneration Systems Engineering , 2011 .

[13]  Carlos Rubio-Maya,et al.  Sequential optimization of a polygeneration plant , 2011 .

[14]  Richard Turton,et al.  Analysis, Synthesis and Design of Chemical Processes , 2002 .

[15]  Michael W Jack,et al.  Scaling laws and technology development strategies for biorefineries and bioenergy plants. , 2009, Bioresource technology.

[16]  François Maréchal,et al.  Methodology for the optimal thermo-economic, multi-objective design of thermochemical fuel production from biomass , 2009, Comput. Chem. Eng..

[17]  Pierluigi Mancarella,et al.  Modelling and assessment of the techno-economic and environmental performance of flexible Multi-Generation systems , 2014, 2014 Power Systems Computation Conference.

[18]  François Maréchal,et al.  Multi-objectives, multi-period optimization of district energy systems: II - Daily thermal storage , 2014, Comput. Chem. Eng..

[19]  Hongxing Yang,et al.  Decrease of energy demand for bioethanol-based polygeneration system through case study , 2012 .

[20]  Efstratios N. Pistikopoulos,et al.  A Multi-Objective Optimization Approach to Polygeneration Energy Systems Design , 2010 .

[21]  François Maréchal,et al.  Multiobjective Design and Optimization of Urban Energy Systems , 2008 .

[22]  Carlos Rubio-Maya,et al.  Design optimization of a polygeneration plant fuelled by natural gas and renewable energy sources , 2011 .

[23]  Pierluigi Mancarella,et al.  Flexible distributed multienergy generation system expansion planning under uncertainty , 2016, 2016 IEEE Power and Energy Society General Meeting (PESGM).

[24]  Zhihong Yuan,et al.  Process synthesis for addressing the sustainable energy systems and environmental issues , 2012 .

[25]  André Bardow,et al.  Superstructure-free synthesis and optimization of distributed industrial energy supply systems , 2012 .

[26]  Max D. Morris,et al.  Factorial sampling plans for preliminary computational experiments , 1991 .

[27]  François Maréchal,et al.  Multi-objectives, multi-period optimization of district energy systems: I. Selection of typical operating periods , 2014, Comput. Chem. Eng..

[28]  Jan Larsen,et al.  Inbicon makes lignocellulosic ethanol a commercial reality , 2012 .

[29]  Michael C. Georgiadis,et al.  A two-stage stochastic programming model for the optimal design of distributed energy systems , 2013 .

[30]  Jan Larsen,et al.  The IBUS Process – Lignocellulosic Bioethanol Close to a Commercial Reality , 2008 .

[31]  André Bardow,et al.  Exploring the Near-Optimal Solution Space for the Synthesis of Distributed Energy Supply Systems , 2013 .

[32]  Alberto Coronas,et al.  Editorial for the special issue of applied thermal engineering on polygeneration , 2013 .

[33]  Thomas A. Adams,et al.  Optimal Design and Operation of Static Energy Polygeneration Systems , 2011 .

[34]  Fredrik Haglind,et al.  Exergy analysis of a combined heat and power plant with integrated lignocellulosic ethanol production , 2014 .

[35]  François Maréchal,et al.  Systematic integration of LCA in process systems design: Application to combined fuel and electricity production from lignocellulosic biomass , 2011, Comput. Chem. Eng..

[36]  Randy L. Haupt,et al.  Practical Genetic Algorithms , 1998 .

[37]  André Bardow,et al.  Automated superstructure-based synthesis and optimization of distributed energy supply systems , 2013 .

[38]  Brian Vad Mathiesen,et al.  Smart Energy Systems for coherent 100% renewable energy and transport solutions , 2015 .

[39]  Fredrik Haglind,et al.  A method for aggregating external operating conditions in multi-generation system optimization models , 2016 .

[40]  Brian Vad Mathiesen,et al.  From electricity smart grids to smart energy systems – A market operation based approach and understanding , 2012 .

[41]  Pierluigi Mancarella,et al.  Multi-energy systems : An overview of concepts and evaluation models , 2015 .

[42]  G. Venkataramanan,et al.  Optimal Technology Selection and Operation of Commercial-Building Microgrids , 2008, IEEE Transactions on Power Systems.

[43]  Robin Smith,et al.  Chemical Process: Design and Integration , 2005 .

[44]  Efstratios N. Pistikopoulos,et al.  A mixed-integer optimization approach for polygeneration energy systems design , 2009, Comput. Chem. Eng..

[45]  Luis M. Serra,et al.  Polygeneration and efficient use of natural resources , 2009 .

[46]  H. Song,et al.  Influence of drying process on the biomass-based polygeneration system of bioethanol, power and heat , 2012 .

[47]  André Bardow,et al.  A hybrid approach for the efficient synthesis of renewable energy systems , 2014 .

[48]  Emil Souleimanov,et al.  Turkey: An Important East-West Energy Hub , 2012 .

[49]  C. Lythcke-Jørgensen Simulation and Optimization of a Steam Co-generation Plant with Integrated Bio-ethanol Production , 2012 .

[50]  Efstratios N. Pistikopoulos,et al.  Decomposition Based Stochastic Programming Approach for Polygeneration Energy Systems Design under Uncertainty , 2010 .

[51]  François Maréchal,et al.  Multi-objectives, multi-period optimization of district energy systems: III. Distribution networks , 2014, Comput. Chem. Eng..

[52]  Raffaele Bolliger Méthodologie de la synthèse des systèmes énergétiques industriels , 2010 .

[53]  Ibrahim Dincer,et al.  Development and assessment of an integrated biomass-based multi-generation energy system , 2013 .

[54]  Thomas A. Adams,et al.  Polygeneration of fuels and chemicals , 2015 .

[55]  Pierluigi Mancarella,et al.  Techno-economic and environmental modelling and optimization of flexible distributed multi-generation options , 2014 .

[56]  Fredrik Haglind,et al.  Design optimization of flexible biomass-processing polygeneration plants using characteristic operation periods , 2014 .

[57]  M. D. McKay,et al.  A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .

[58]  C. F. King Analysis, Synthesis, and Design of Chemical Processes. Richard Turton, Richard Bailie, Wallace Whiting, Joseph Shaeiwitz Prentice Hall, 1998 , 1999 .

[59]  Carlos A. Infante Ferreira,et al.  Pinch Analysis and Process Integration , 2016 .

[60]  François Maréchal,et al.  Methods for multi-objective investment and operating optimization of complex energy systems , 2012 .

[61]  Fredrik Haglind,et al.  Design optimization of a polygeneration plant producing power, heat, and lignocellulosic ethanol , 2015 .

[62]  Roberto Gallea,et al.  A comprehensive tool for efficient design and operation of polygeneration-based energy μgrids serving a cluster of buildings. Part I: Description of the method , 2013 .

[63]  Thomas A. Adams,et al.  Decomposition strategy for the global optimization of flexible energy polygeneration systems , 2012 .

[64]  Henrik Lund,et al.  Renewable Energy Systems: The Choice and Modeling of 100% Renewable Solutions , 2009 .