On the normal behaviour of partially elliptic lower-dimensional tori of Hamiltonian systems
暂无分享,去创建一个
[1] Fernando Bertolini,et al. Le funzioni misurabili di ultrafiltro come elementi di un reticolo lineare numerabilmente completo , 1961 .
[2] V. I. Arnol'd,et al. PROOF OF A THEOREM OF A.?N.?KOLMOGOROV ON THE INVARIANCE OF QUASI-PERIODIC MOTIONS UNDER SMALL PERTURBATIONS OF THE HAMILTONIAN , 1963 .
[3] J. Pöschel. On elliptic lower dimensional tori in hamiltonian systems , 1989 .
[4] George Huitema,et al. Unfoldings and Bifurcations of Quasi-Periodic Tori , 1990 .
[5] G. B. Huitema,et al. Unfolding and bifurcations of quasi-periodic tori. I: Unfolding of quasi-periodic tori , 1990 .
[6] Stephen Wiggins,et al. KAM tori are very sticky: rigorous lower bounds on the time to move away from an invariant Lagrangian torus with linear flow , 1994 .
[7] A. Giorgilli,et al. Superexponential stability of KAM tori , 1995 .
[8] George Huitema,et al. Quasi-Periodic Motions in Families of Dynamical Systems: Order amidst Chaos , 2002 .
[9] C. Simó,et al. On quasi-periodic perturbations of elliptic equilibrium points , 1996 .
[10] A. Delshams,et al. Estimates on Invariant Tori near an Elliptic Equilibrium Point of a Hamiltonian System , 1996 .
[11] A. Delshams,et al. Effective Stability and KAM Theory , 1996 .
[12] J. Pöschel,et al. Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrodinger equation , 1996 .
[13] Àngel Jorba,et al. On the Persistence of Lower Dimensional Invariant Tori under Quasi-Periodic Perturbations , 1997 .
[14] J. Villanueva,et al. Effective reducibility of quasi-periodic linear equations close to constant coefficients , 1997 .
[15] Àngel Jorba,et al. Numerical computation of normal forms around some periodic orbits of the restricted three-body problem , 1998 .