Microstructural Characteristics and Mechanical Behaviors of AlCoCrFeNi High-Entropy Alloys at Ambient and Cryogenic Temperatures

The phase-formation rule of high-entropy alloys (HEAs) with different microstructures is discussed, based on the atom-size difference in multicomponent alloys. For the single-phase HEA with the composition of AlCoCrFeNi, the yielding strengths and fracture strengths at cryogenic temperatures increase distinguishingly, compared to the corresponding mechanical properties at ambient temperature. However, the plasticity at 298 and 77 K changes very gently, while the fracture modes are intergranular and transgranular, respectively.

[1]  Jikun Chen,et al.  Glass formation mechanism of minor yttrium addition in CuZrAl alloys , 2006 .

[2]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .

[3]  Andrew G. Glen,et al.  APPL , 2001 .

[4]  Gang Wang,et al.  Super Plastic Bulk Metallic Glasses at Room Temperature , 2007, Science.

[5]  Peter K. Liaw,et al.  Compressive Behavior of a Zr‐Based Metallic Glass at Cryogenic Temperatures , 2006 .

[6]  Douglas C. Hofmann,et al.  Designing metallic glass matrix composites with high toughness and tensile ductility , 2008, Nature.

[7]  B. Li,et al.  Microstructure and compressive properties of AlCrFeCoNi high entropy alloy , 2008 .

[8]  Yi Qiao,et al.  Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys , 2007 .

[9]  P. Liaw,et al.  Mechanical behavior of bulk amorphous alloys reinforced by ductile particles at cryogenic temperatures. , 2006, Physical review letters.

[10]  Y. Zhou,et al.  Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties , 2007 .

[11]  Martin A. Green,et al.  High-efficiency silicon solar cells , 1984, IEEE Transactions on Electron Devices.

[12]  E-Wen Huang,et al.  Study of nanoprecipitates in a nickel-based superalloy using small-angle neutron scattering and transmission electron microscopy , 2008 .

[13]  P. Liaw,et al.  A combined drop/suction-casting machine for the manufacture of bulk-metallic-glass materials , 2006 .

[14]  L. Largeau,et al.  Spontaneous compliance of the InP∕SrTiO3 heterointerface , 2008 .

[15]  Fu Lee Wang,et al.  Atomic packing efficiency and phase transition in a high entropy alloy , 2009 .

[16]  Sidney Mindess,et al.  Mechanical Behavior of Engineering Materials , 2004 .

[17]  B. Cantor,et al.  Microstructural development in equiatomic multicomponent alloys , 2004 .

[18]  Gang Wang,et al.  In situ high-energy X-ray studies of magnetic-field-induced phase transition in a ferromagnetic shape memory Ni–Co–Mn–In alloy , 2008 .

[19]  P. Liaw,et al.  Solid‐Solution Phase Formation Rules for Multi‐component Alloys , 2008 .

[20]  D. Maric,et al.  Interstitial H and {H,B}, {H,C}and {H,Si} Pairs in Si and Ge , 1992 .

[21]  Jing Shi,et al.  Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys , 2009 .

[22]  James R. Morris,et al.  Microstructure evolution during cold rolling in a nanocrystalline Ni–Fe alloy determined by synchrotron X-ray diffraction , 2009 .

[23]  P. Liaw,et al.  Low-temperature shear banding for a Cu-based bulk-metallic glass , 2010 .

[24]  P. Liaw,et al.  Large plasticity and tensile necking of Zr-based bulk-metallic-glass-matrix composites synthesized by the Bridgman solidification , 2009 .

[25]  Yuan-Sheng Huang,et al.  On the elemental effect of AlCoCrCuFeNi high-entropy alloy system , 2007 .