The interface between computational and combinatorial geometry

We illustrate the rich interface between computational and combinatorial geometry by a series of examples, including k-sets, randomized incremental algorithms, random sampling and partitioning, and analysis of geometric arrangements.

[1]  Raimund Seidel,et al.  Voronoi diagrams and arrangements , 1986, Discret. Comput. Geom..

[2]  Kenneth L. Clarkson,et al.  New applications of random sampling in computational geometry , 1987, Discret. Comput. Geom..

[3]  R. Thom Sur L'Homologie des Varietes Algebriques Réelles , 1965 .

[4]  J. Schwartz,et al.  On the “piano movers” problem. II. General techniques for computing topological properties of real algebraic manifolds , 1983 .

[5]  Micha Sharir,et al.  3-Dimensional Euclidean Voronoi Diagrams of Lines with a Fixed Number of Orientations , 2003, SIAM J. Comput..

[6]  M. Sharir,et al.  New bounds for lower envelopes in three dimensions, with applications to visibility in terrains , 1993, SCG '93.

[7]  Vladlen Koltun Almost tight upper bounds for lower envelopes in higher dimensions , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[8]  Mariette Yvinec,et al.  Voronoi Diagrams in Higher Dimensions under Certain Polyhedral Distance Functions , 1998, Discret. Comput. Geom..

[9]  Micha Sharir,et al.  Efficient algorithms for geometric optimization , 1998, CSUR.

[10]  S. LaValle,et al.  Motion Planning , 2008, Springer Handbook of Robotics.

[11]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[12]  J. T. Shwartz,et al.  On the Piano Movers' Problem : III , 1983 .

[13]  Micha Sharir,et al.  Polyhedral Voronoi Diagrams of Polyhedra in Three Dimensions , 2002, SCG '02.

[14]  Micha Sharir,et al.  On the complexity of the union of fat objects in the plane , 1997, SCG '97.

[15]  Richard Pollack,et al.  On the Number of k-Subsets of a Set of n Points in the Plane , 1984, J. Comb. Theory, Ser. A.

[16]  Micha Sharir,et al.  The Union of Congruent Cubes in Three Dimensions , 2003, Discret. Comput. Geom..

[17]  Saugata Basu The Combinatorial and Topological Complexity of a Single Cell , 2003, Discret. Comput. Geom..

[18]  David Haussler,et al.  ɛ-nets and simplex range queries , 1987, Discret. Comput. Geom..

[19]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[20]  J. Milnor On the Betti numbers of real varieties , 1964 .

[21]  Micha Sharir,et al.  The upper envelope of voronoi surfaces and its applications , 1993, Discret. Comput. Geom..

[22]  Timothy M. Chan On Levels in Arrangements of Curves , 2003, Discret. Comput. Geom..

[23]  Micha Sharir,et al.  On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles , 1986, Discret. Comput. Geom..

[24]  J. Pach Towards a Theory of Geometric Graphs , 2004 .

[25]  Noga Alon,et al.  The number of small semispaces of a finite set of points in the plane , 1986, J. Comb. Theory, Ser. A.

[26]  Franz Aurenhammer,et al.  Voronoi Diagrams , 2000, Handbook of Computational Geometry.

[27]  R. Seidel Backwards Analysis of Randomized Geometric Algorithms , 1993 .

[28]  Marco Pellegrini Ray Shooting and Lines in Space , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[29]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[30]  Bernard Chazelle,et al.  A deterministic view of random sampling and its use in geometry , 1990, Comb..

[31]  Micha Sharir,et al.  Three dimensional euclidean Voronoi diagrams of lines with a fixed number of orientations , 2002, SCG '02.

[32]  Micha Sharir,et al.  Sharp upper and lower bounds on the length of general Davenport-Schinzel sequences , 2015, J. Comb. Theory, Ser. A.

[33]  Rephael Wenger,et al.  Helly-Type Theorems and Geometric Transversals , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[34]  Micha Sharir,et al.  Nonlinearity of davenport—Schinzel sequences and of generalized path compression schemes , 1986, FOCS.

[35]  Leonidas J. Guibas,et al.  A Singly Exponential Stratification Scheme for Real Semi-Algebraic Varieties and its Applications , 1991, Theor. Comput. Sci..

[36]  Richard Cole,et al.  On k-Hulls and Related Problems , 1987, SIAM J. Comput..

[37]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[38]  Micha Sharir,et al.  Davenport-Schinzel sequences and their geometric applications , 1995, Handbook of Computational Geometry.

[39]  Micha Sharir,et al.  Almost tight upper bounds for the single cell and zone problems in three dimensions , 1994, SCG '94.

[40]  Micha Sharir,et al.  Fat Triangles Determine Linearly Many Holes , 1994, SIAM J. Comput..

[41]  Géza Tóth,et al.  Point Sets with Many k-Sets , 2000, SCG '00.

[42]  Tamal K. Dey,et al.  Improved Bounds for Planar k -Sets and Related Problems , 1998, Discret. Comput. Geom..

[43]  Micha Sharir,et al.  Arrangements of surfaces in higher dimensions , 1999 .

[44]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[45]  János Pach,et al.  Combinatorial Geometry , 2012 .

[46]  Jirí Matousek Derandomization in Computational Geometry , 2000, Handbook of Computational Geometry.

[47]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[48]  Jirí Matousek,et al.  Efficient partition trees , 1991, SCG '91.

[49]  Micha Sharir Almost tight upper bounds for lower envelopes in higher dimensions , 1994, Discret. Comput. Geom..

[50]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[51]  Jirí Matousek,et al.  Constructing levels in arrangements and higher order Voronoi diagrams , 1994, SCG '94.

[52]  Franco P. Preparata,et al.  Computational Geometry , 1985, Texts and Monographs in Computer Science.

[53]  Endre Szemerédi,et al.  Extremal problems in discrete geometry , 1983, Comb..

[54]  P. Erdös,et al.  Dissection Graphs of Planar Point Sets , 1973 .