Mammalian evolution and the interphotoreceptor retinoid binding protein (IRBP) gene: Convincing evidence for several superordinal clades

Phylogenetic relationships of 25 mammalian species representing 17 of the 18 eutherian orders were examined using DNA sequences from a 1.2-kb region of the 5′ end of exon 1 of the single-copy nuclear gene known as interphotoreceptor retinoid binding protein (IRBP). A wide variety of methods of analysis of the DNA sequence, and of the translated products, all supported a five-order clade consisting of elephant shrew (Macroscelidea)/aardvark (Tubulidentata)/and the paenungulates (hyracoids, sirenians, and elephants), with bootstrap support in all cases of 100%. The Paenungulata was also strongly supported by these IRBP data. In the majority of analyses this monophyletic five-order grouping was the first branch off the tree after the Edentata. These results are highly congruent with two other recent sources of molecular data. Another superordinal grouping, with similar 100% bootstrap support in all of the same wide-ranging types of analyses, was Artiodactyla/Cetacea. Other superordinal affinities, suggested by the analyses, but with less convincing support, included a Perissodactyla/Artiodactyla/Cetacea clade, an Insectivora/Chiroptera clade, and Glires (an association of rodents and lagomorphs).

[1]  M. Novacek,et al.  HIGHER‐LEVEL RELATIONSHIPS OF THE RECENT EUTHERIAN ORDERS: MORPHOLOGICAL EVIDENCE , 1986, Cladistics : the international journal of the Willi Hennig Society.

[2]  M. Goodman,et al.  Relationship of aardvark to elephants, hyraxes and sea cows from α-crystallin sequences , 1981, Nature.

[3]  J. Felsenstein Evolutionary trees from DNA sequences: A maximum likelihood approach , 2005, Journal of Molecular Evolution.

[4]  J. Leunissen,et al.  Eye Lens Crystallins and the Phylogeny of Placental Orders: Evidence for a Macroscelid-Paenungulate Clade , 1993 .

[5]  D. Simberloff,et al.  Molecules and Morphology in Evolution: Conflict or Compromise? , 1987 .

[6]  M. Kimura A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences , 1980, Journal of Molecular Evolution.

[7]  D. Hillis,et al.  A Molecular Test of Bat Relationships: Monophyly or Diphyly? , 1992 .

[8]  M. Novacek Information for Molecular Studies from Anatomical and Fossil Evidence on Higher Eutherian Phylogeny , 1982 .

[9]  M. Springer,et al.  A molecular perspective on the phylogeny of placental mammals based on mitochondrial 12S rDNA sequences, with special reference to the problem of the Paenungulata , 1993, Journal of Mammalian Evolution.

[10]  M. Goodman,et al.  A molecular perspective on mammalian evolution from the gene encoding interphotoreceptor retinoid binding protein, with convincing evidence for bat monophyly. , 1992, Molecular phylogenetics and evolution.

[11]  M. Goodman,et al.  Evidence on mammalian phylogeny from sequences of exon 28 of the von Willebrand factor gene. , 1996, Molecular phylogenetics and evolution.

[12]  M. Mckenna Toward a Phylogenetic Classification of the Mammalia , 1975 .

[13]  M. Miyamoto,et al.  Biomolecular Systematics of Eutherian Mammals: Phylogenetic Patterns and Classification , 1986 .

[14]  F. Szalay Rodent and Lagomorph Morphotype Adaptations, Origins, and Relationships: Some Postcranial Attributes Analyzed , 1985 .

[15]  R. Adkins,et al.  A Molecular Examination of Archontan and Chiropteran Monophyly , 1993 .

[16]  D. Higgins,et al.  Molecular evidence for the inclusion of cetaceans within the order Artiodactyla. , 1994, Molecular biology and evolution.

[17]  M. Miyamoto,et al.  Support for interordinal eutherian relationships with an emphasis on primates and their archontan relatives. , 1996, Molecular phylogenetics and evolution.

[18]  R. Adkins,et al.  Molecular phylogeny of the superorder Archonta. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[19]  J. I. Johnson,et al.  Phylogeny through Brain Traits: Interordinal Relationships among Mammals Including Primates and Chiroptera , 1993 .

[20]  M. Novacek Morphology, paleontology, and the higher clades of mammals , 1990 .

[21]  M. Novacek The skull of leptictid insectivorans and the higher-level classification of eutherian mammals. Bulletin of the AMNH ; v. 183, article 1 , 1986 .

[22]  F. Szalay Phylogenetic Relationships and a Classification of the Eutherian Mammalia , 1977 .

[23]  T. Jukes CHAPTER 24 – Evolution of Protein Molecules , 1969 .

[24]  J. Shoshani Hyracoidea-Tethytheria Affinity Based on Myological Data , 1993 .

[25]  J. Sgouros,et al.  A Molecular View of Primate Supraordinal Relationships from the Analysis of Both Nucleotide and Amino Acid Sequences , 1993 .

[26]  E. Simons,et al.  Early tertiary elephant-shrews from Egypt and the origin of the Macroscelidea. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[27]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[28]  M. Novacek Mammalian phylogeny: shaking the tree. , 1992, Nature.

[29]  R. Adkins,et al.  Mammalian mitochondrial DNA evolution: A comparison of the cytochrome b and cytochrome c oxidase II genes , 1995, Journal of Molecular Evolution.

[30]  Masami Hasegawa,et al.  Phylogenetic relationships among eutherian orders estimated from inferred sequences of mitochondrial proteins: Instability of a tree based on a single gene , 1994, Journal of Molecular Evolution.

[31]  S. Fong,et al.  Characterization and comparative structural features of the gene for human interstitial retinol-binding protein. , 1990, The Journal of biological chemistry.

[32]  M. Hasegawa,et al.  Tempo and mode of mitochondrial DNA evolution in vertebrates at the amino acid sequence level: Rapid evolution in warm-blooded vertebrates , 1993, Journal of Molecular Evolution.

[33]  M. Goodman,et al.  PHYLOGENY OF PRIMATES AND OTHER EUTHERIAN ORDERS: A CLADISTIC ANALYSIS USING AMINO ACID AND NUCLEOTIDE SEQUENCE DATA , 1985, Cladistics : the international journal of the Willi Hennig Society.

[34]  George Gaylord Simpson,et al.  The Principles of Classification and a Classification of Mammals. , 1945 .

[35]  J. Hartenberger Hypothèse paléontologique sur l'origine des macroscelidea (Mammalia) , 1986 .

[36]  E. Simons,et al.  Hind Limbs of Eocene Basilosaurus: Evidence of Feet in Whales , 1990, Science.

[37]  M. Gonda,et al.  Interphotoreceptor retinoid-binding protein. Gene characterization, protein repeat structure, and its evolution. , 1989, The Journal of biological chemistry.

[38]  A. R. Templeton,et al.  PHYLOGENETIC INFERENCE FROM RESTRICTION ENDONUCLEASE CLEAVAGE SITE MAPS WITH PARTICULAR REFERENCE TO THE EVOLUTION OF HUMANS AND THE APES , 1983, Evolution; international journal of organic evolution.

[39]  G. Chader,et al.  Interphotoreceptor retinoid-binding protein (IRBP) , 1993, Molecular Neurobiology.

[40]  M. Goodman,et al.  Perspectives from amino acid and nucleotide sequences on cladistic relationships among higher taxa of eutheria , 1990 .

[41]  J. Felsenstein Confidence Limits on Phylogenies With a Molecular Clock , 1985 .

[42]  R. Adkins,et al.  Higher Level Systematics of Eutherian Mammals: An Assessment of Molecular Characters and Phylogenetic Hypotheses , 1993 .

[43]  E. L. Cabot,et al.  Simultaneous editing of multiple nucleic acid and protein sequences with ESEE , 1989, Comput. Appl. Biosci..

[44]  G. Chader,et al.  Interphotoreceptor retinoid-binding protein Characteristics in bovine and monkey retina , 1984, Vision Research.

[45]  D. Prothero,et al.  The Evolution of perissodactyls , 1989 .

[46]  M. Gouy,et al.  Molecular phylogeny of Rodentia, Lagomorpha, Primates, Artiodactyla, and Carnivora and molecular clocks. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[47]  A. Meyer,et al.  Revised phylogeny of whales suggested by mitochondrial ribosomal DNA sequences , 1993, Nature.

[48]  M. Goodman,et al.  Rejection of the "flying primate" hypothesis by phylogenetic evidence from the epsilon-globin gene. , 1992, Science.

[49]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[50]  J. Hanks,et al.  A revision of the elephant-shrews, family Macroscelididae , 1968 .