Polysensory properties of neurons in the anterior bank of the caudal superior temporal sulcus of the macaque monkey.

1. We examined the sensory properties of cells in the anterior bank of the caudal part of the superior temporal sulcus (caudal STS) in anesthetized, paralyzed monkeys to visual, auditory, and somesthetic stimuli. 2. In the anterior bank of the caudal STS, there were three regions distinguishable from each other and also from the middle temporal area (MT) in the floor of the STS and area Tpt in the superior temporal gyrus. The three regions were located approximately in the respective inner, middle, and outer thirds of the anterior bank of the caudal STS. These three regions are referred to, from the inner to the outer, as the medial superior temporal region (MST), the mostly unresponsive region, and the caudal STS polysensory region (cSTP), respectively. 3. The extent of MST and its response properties agreed with previous studies. Cells in MST responded exclusively to visual stimuli, had large visual receptive fields (RFs), and nearly all (91%) showed directional selectivity. 4. In the mostly unresponsive region, three quarters of cells were unresponsive to any stimulus used in this study. A quarter of the cells responded to only visual stimuli and most did not show directional selectivity for moving stimuli. Several directionally selective cells responded to movements of three-dimensional objects, but not of projected stimuli. 5. The response properties of cells in the superficial cortex of the caudal superior temporal gyrus, a part of area Tpt, external to cSTP were different from those of cells in the three regions in the anterior bank of the STS. Cells in Tpt were exclusively auditory, and had much larger auditory RFs (mean = 271 degrees) than those of acoustically-driven cSTP cells (mean = 138 degrees). 6. The cSTP contained unimodal visual, auditory, and somesthetic cells as well as multimodal cells of two or all three modalities. The sensory properties of cSTP cells were as follows. 1) Out of 200 cells recorded, 102 (51%) cells were unimodal (59 visual, 33 auditory, and 10 somesthetic), 36 (18%) cells were bimodal (21 visual+auditory, 7 visual+somesthetic, and 8 auditory+somesthetic), and four (2%) cells were trimodal. Visual and auditory responses were more frequent than somesthetic responses: the ratio of the population of cells driven by visual: auditory: somesthetic stimuli was 3:2:1. 2) Visual RFs were large (mean diameter, 59 degrees), but two-thirds were limited to the contralateral visual hemifield. About half the cells showed directional selectivity for moving visual stimuli. None showed selectivity for particular visual shapes.(ABSTRACT TRUNCATED AT 400 WORDS)