Prediction of a New Layered Polymorph of FeS 2 with Fe 3+ S 2– (S 2 ) 1/2 2- Structure

The never-elucidated crystal structure of metastable iron disulfide FeS 2 resulting from the full deintercalation of Li in Li 2 FeS 2 has been cracked thanks to crystal structure prediction searches based on an evolutionary algorithm combined with first-principles calculations accounting for experimental observations. Besides the newly layered C 2/ m polymorph of iron disulfide, two-dimensional dynamically stable FeS 2 phases are proposed containing sulfides and/or persulfide S 2 motifs. pair distribution function (PDF) FeS polymorphic experimental FeS

[1]  Jesse S. Ko,et al.  Multielectron, Cation and Anion Redox in Lithium-Rich Iron Sulfide Cathodes. , 2020, Journal of the American Chemical Society.

[2]  J. Tarascon,et al.  Publisher Correction: Exploring the bottlenecks of anionic redox in Li-rich layered sulfides , 2019, Nature Energy.

[3]  M. Ben Yahia,et al.  Unified picture of anionic redox in Li/Na-ion batteries , 2019, Nature Materials.

[4]  Hong Jiang,et al.  Relative stability of FeS2 polymorphs with the random phase approximation approach , 2018 .

[5]  G. Frapper,et al.  Pressure-Induced Polymerization of CO2 in Lithium-Carbon Dioxide Phases. , 2018, Journal of the American Chemical Society.

[6]  Bowen Huang Computational materials discovery : prediction of carbon dioxide and nitrogen-based compounds under pressure using density functional theory and evolutionary algorithm , 2017 .

[7]  Xiaodi Ren,et al.  MoS2 as a long-life host material for potassium ion intercalation , 2017, Nano Research.

[8]  E. Rodriguez,et al.  Metastable Layered Cobalt Chalcogenides from Topochemical Deintercalation. , 2016, Journal of the American Chemical Society.

[9]  Steven D. Lacey,et al.  Tuning two-dimensional nanomaterials by intercalation: materials, properties and applications. , 2016, Chemical Society reviews.

[10]  J. Perdew,et al.  Versatile van der Waals Density Functional Based on a Meta-Generalized Gradient Approximation , 2016 .

[11]  D. A. D. Corte,et al.  Practical Assessment of Anionic Redox in Li-Rich Layered Oxide Cathodes: A Mixed Blessing for High Energy Li-Ion Batteries , 2016 .

[12]  J. Tarascon,et al.  Search for Li-electrochemical activity and Li-ion conductivity among lithium bismuth oxides , 2015 .

[13]  Sheng Liu,et al.  Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide , 2015, Nature Communications.

[14]  Adrienn Ruzsinszky,et al.  Strongly Constrained and Appropriately Normed Semilocal Density Functional. , 2015, Physical review letters.

[15]  Jun Chen,et al.  MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. , 2014, Angewandte Chemie.

[16]  Zhenyu Li,et al.  Obtaining two-dimensional electron gas in free space without resorting to electron doping: an electride based design. , 2014, Journal of the American Chemical Society.

[17]  B. Iversen,et al.  Atomic properties and chemical bonding in the pyrite and marcasite polymorphs of FeS2: a combined experimental and theoretical electron density study , 2014 .

[18]  Qiang Zhu,et al.  Semimetallic Two-Dimensional Boron Allotrope with Massless Dirac Fermions , 2013, 1309.2596.

[19]  K Ramesha,et al.  Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. , 2013, Nature materials.

[20]  Qiang Zhu,et al.  New developments in evolutionary structure prediction algorithm USPEX , 2013, Comput. Phys. Commun..

[21]  Stefano de Gironcoli,et al.  Nonlocal van der Waals density functional made simple and efficient , 2013 .

[22]  Can Ataca,et al.  Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure , 2012 .

[23]  G. Ceder,et al.  First-principles electronic structure and relative stability of pyrite and marcasite: Implications for photovoltaic performance , 2011 .

[24]  A. Oganov,et al.  How evolutionary crystal structure prediction works--and why. , 2011, Accounts of chemical research.

[25]  J. Gale,et al.  Density functional theory study of the relative stability of the iron disulfide polymorphs pyrite and marcasite , 2010 .

[26]  A. Oganov,et al.  Crystal structure prediction using ab initio evolutionary techniques: principles and applications. , 2006, The Journal of chemical physics.

[27]  Stefano de Gironcoli,et al.  Linear response approach to the calculation of the effective interaction parameters in the LDA + U method , 2004, cond-mat/0405160.

[28]  T. Hertel,et al.  Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons , 2003, cond-mat/0308451.

[29]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[30]  J. Broderick 8.27 – Iron–Sulfur Clusters in Enzyme Catalysis , 2003 .

[31]  E. Wachtel,et al.  Alkali metal intercalated fullerene-like MS(2) (M = W, Mo) nanoparticles and their properties. , 2002, Journal of the American Chemical Society.

[32]  J. Tarascon,et al.  In Situ Structural and Electrochemical Study of Ni1-xCoxO2 Metastable Oxides Prepared by Soft Chemistry , 1999 .

[33]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[34]  W. David,et al.  Properties of the transition metal dichalcogenides: The case of IrS2 and IrSe2 , 1990 .

[35]  G. Ouvrard,et al.  Redox processes in the LixFeS2/Li electrochemical system studied through crystal, Mössbauer, and EXAFS analyses , 1989 .

[36]  G. Ouvrard,et al.  Transition-metal dichalcogenides from disintercalation processes. Crystal structure determination and Mossbauer study of Li2FeS2 and its disintercalates LixFeS2 (0.2⩽x⩽2) , 1987 .

[37]  G. Ouvrard,et al.  Infrared study of lithium intercalated phases in the LixFeS2 system (0 ⩽ x ⩽ 2). Characterization of a new iron disulfide , 1986 .

[38]  D. Murphy,et al.  Lithium intercalation in cubic TiS2 , 1986 .

[39]  D. Murphy,et al.  PREPARATION AND PROPERTIES OF LIXVS2 (0 ≤ X ≤ 1) , 1978 .

[40]  F. Grønvold,et al.  Heat capacities of iron disulfides Thermodynamics of marcasite from 5 to 700 K, pyrite from 300 to 780 K, and the transformation of marcasite to pyrite , 1976 .

[41]  Y. Arnaud,et al.  Etude structurale des composés MxTiSe2 (M = Fe, Co, Ni) , 1976 .