Analytic bond-order potential for the gallium arsenide system

An analytic, bond-order potential BOP is proposed and parametrized for the gallium arsenide system. The potential addresses primary and secondary bonding and the valence-dependent character of heteroatomic bonding, and it can be combined with an electron counting potential to address the distribution of electrons on the GaAs surface. The potential was derived from a tight-binding description of covalent bonding by retaining the first two levels of an expanded Green’s function for the and bond-order terms. Predictions using the potential were compared with independent estimates for the structures and binding energy of small clusters dimers, trimers, and tetramers and for various bulk lattices with coordinations varying from 4 to 12. The structure and energies of simple point defects and melting transitions were also investigated. The relative stabilities of the 001 surface reconstructions of GaAs were well predicted, especially under high-arsenicoverpressure conditions. The structural and binding energy trends of this GaAs BOP generally match experimental observations and ab initio calculations.

[1]  H. Wadley,et al.  Low-temperature atomic assembly of stoichiometric gallium arsenide from equiatomic vapor , 2006 .

[2]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[3]  T. Ohno Theoretical study of atomic structures and dynamics on semiconductor surfaces , 1996 .

[4]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[5]  William H. Press,et al.  Numerical recipes in Fortran 90: the art of parallel scientific computing, 2nd Edition , 1996, Fortran numerical recipes.

[6]  R. Nieminen,et al.  Small self-interstitial clusters in GaAs , 2003 .

[7]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[8]  Zhang,et al.  Dopant and defect energetics: Si in GaAs. , 1993, Physical review. B, Condensed matter.

[9]  P. Papoulias,et al.  Arsenic interstitials and interstitial complexes in low-temperature grown GaAs , 1997 .

[10]  D. Pettifor,et al.  New many-body potential for the bond order. , 1989, Physical review letters.

[11]  Haydn N. G. Wadley,et al.  Analytic bond-order potentials for multicomponent systems , 2004 .

[12]  D. G. Pettifor,et al.  Bonding and Structure of Molecules and Solids , 1995 .

[13]  Weber,et al.  Structural calculations for bulk As. , 1986, Physical Review B (Condensed Matter).

[14]  Wang,et al.  Melting line of aluminum from simulations of coexisting phases. , 1994, Physical review. B, Condensed matter.

[15]  Dimitri D. Vvedensky,et al.  ISLAND NUCLEATION AND GROWTH ON RECONSTRUCTED GAAS(001) SURFACES , 1998 .

[16]  C. Dj Self-interstitial bonding configurations in GaAs and Si. , 1992 .

[17]  A. Ohtake,et al.  Two types of structures for the GaAs(001)-c(4×4) surface , 2003 .

[18]  M. Parrinello,et al.  Strain fluctuations and elastic constants , 1982 .

[19]  Martin,et al.  Stresses in semiconductors: Ab initio calculations on Si, Ge, and GaAs. , 1985, Physical review. B, Condensed matter.

[20]  Y. Kawazoe,et al.  Computational Materials Science: From Ab Initio to Monte Carlo Methods , 2000 .

[21]  A. Jayaraman,et al.  Elastic Moduli of GaAs at Moderate Pressures and the Evaluation of Compression to 250 kbar , 1967 .

[22]  H. Wadley,et al.  Predicting surface free energies with interatomic potentials and electron counting , 2005 .

[23]  X. Gonze,et al.  First-principles study of As, Sb, and Bi electronic properties. , 1990, Physical review. B, Condensed matter.

[24]  J. Harbison,et al.  Molecular‐beam epitaxial growth mechanisms on the GaAs(100) surface , 1988 .

[25]  B. Joyce,et al.  Arsenic incorporation kinetics in GaAs(001) homoepitaxy revisited , 1997 .

[26]  D. Pettifor,et al.  Analytic environment-dependent tight-binding bond integrals: application to MoSi2. , 2000, Physical review letters.

[27]  Peter Kratzer,et al.  Understanding the growth mechanisms of GaAs and InGaAs thin films by employing first-principles calculations , 2003 .

[28]  H. Wadley,et al.  Assessment of interatomic potentials for molecular dynamics simulations of GaAs deposition , 2005 .

[29]  J. Nye Physical Properties of Crystals: Their Representation by Tensors and Matrices , 1957 .

[30]  J. BelBruno,et al.  Bonding and energetics in small clusters of gallium and arsenic , 2003 .

[31]  D. G. Pettifor,et al.  Analytic bond-order potentials beyond Tersoff-Brenner. I. Theory , 1999 .

[32]  R. Johnson,et al.  Mechanisms, models and methods of vapor deposition , 2001 .

[33]  R. Nieminen,et al.  Reliability of analytical potentials for point-defect simulation in GaAs , 2004 .

[34]  T. Hashizume,et al.  Scanning Tunneling Microscopy of III–V Compound Semiconductor (001) Surfaces , 1997 .

[35]  G. Herzberg Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules , 1939 .

[36]  T. Hashizume,et al.  Scanning tunneling microscopy study of GaAs(001) surfaces , 1999 .

[37]  F. Bechstedt,et al.  Do WE UNDERSTAND THE STRUCTURE OF THE GALLIUM-RICH SURFACE of GaAs(001)? EXPERIMENTAL AND THEORETICAL APPROACHES , 2002 .

[38]  A. Dahlén,et al.  Phase relations in GaAs crystal growth , 1991 .

[39]  D. Pettifor,et al.  Atomistic modelling of TiAl I. Bond-order potentials with environmental dependence , 2003 .

[40]  T. Jouhti,et al.  Electronic and structural properties of GaAs(100)(2x4) and InAs(100)(2x4) surfaces studied by core-level photoemission and scanning tunneling microscopy , 2005 .

[41]  Peter Kratzer,et al.  Arsenic dimer dynamics during MBE growth: Theoretical evidence for a novel chemisorption state of As_2 molecules on GaAs surfaces , 1999 .

[42]  Kai Nordlund,et al.  Modeling of compound semiconductors: Analytical bond-order potential for Ga, As, and GaAs , 2002 .

[43]  M. Missous,et al.  NONSTOICHIOMETRY AND DOPANTS RELATED PHENOMENA IN LOW TEMPERATURE GAAS GROWN BY MOLECULAR BEAM EPITAXY , 1994 .

[44]  Aoki,et al.  Bond-order potentials: Theory and implementation. , 1996, Physical review. B, Condensed matter.

[45]  S. Froyen,et al.  Energetics of GaAs(100)-(24) and -(42) reconstructions , 1993 .

[46]  John R. Ray,et al.  Statistical ensembles and molecular dynamics studies of anisotropic solids , 1984 .

[47]  Jerry Donohue The structures of the elements , 1974 .

[48]  J. Tersoff,et al.  Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. , 1989, Physical review. B, Condensed matter.

[49]  C. Foxon,et al.  Interaction kinetics of As2 and Ga on {100} GaAs surfaces , 1977 .

[50]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[51]  W. Schmidt,et al.  Gallium‐rich reconstructions on GaAs(001) , 2003 .

[52]  D. Pettifor From Exact to Approximate Theory: The Tight Binding Bond Model and Many-Body Potentials , 1990 .

[53]  Ishimaru,et al.  Application of empirical interatomic potentials to liquid Si. , 1996, Physical review. B, Condensed matter.

[54]  S. Kameoka,et al.  Atomistic model of limited-thickness Si(001) epitaxy at low temperatures , 2004 .

[55]  Molecular-dynamics simulation of molecular-beam epitaxial growth of the silicon (100) surface. , 1987, Physical review. B, Condensed matter.

[56]  D. A. Shirley,et al.  Photoelectron spectroscopy and electronic structure of clusters of the group V elements. I, Dimers , 1990 .

[57]  W. Harrison Theory of polar semiconductor surfaces , 1979 .

[58]  D. Pettifor,et al.  Bounded analytic bond-order potentials for sigma and pi bonds , 2000, Physical review letters.

[59]  J. R. Arthur Surface stoichiometry and structure of GaAs , 1974 .

[60]  D. Allan,et al.  OBSERVATION OF A SIMPLE-CUBIC PHASE OF GAAS WITH A 16-ATOM BASIS (SC16) , 1998 .

[61]  Muñoz,et al.  First-principles pseudopotential study of the phase stability of the III-V semiconductors GaAs and AlAs. , 1995, Physical review. B, Condensed matter.

[62]  J. J. Murray,et al.  Heat of dissociation of As4(g) and the heat of formation of As2(g) , 1973 .

[63]  M. Baskes,et al.  Atomistic model of gallium , 2002 .

[64]  Tosatti,et al.  Ab initio calculations of structural and electronic properties of gallium solid-state phases. , 1995, Physical review. B, Condensed matter.

[65]  A. Baldereschi,et al.  Surface morphology and ionization potentials of polar semiconductors: The case of GaAs , 2004 .

[66]  Georg Kresse,et al.  Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements , 1994 .

[67]  Chadi,et al.  First-principles study of the atomic reconstructions and energies of Ga- and As-stabilized GaAs(100) surfaces. , 1988, Physical review. B, Condensed matter.

[68]  Syassen,et al.  Rhombohedral to simple-cubic phase transition in arsenic under pressure. , 1990, Physical review. B, Condensed matter.

[69]  A. J. Skinner,et al.  Generating Transferable Tight-Binding Parameters: Application to Silicon , 1989 .

[70]  Northrup,et al.  Surface reconstructions of GaAs(100) observed by scanning tunneling microscopy. , 1990, Physical review. B, Condensed matter.

[71]  F. Cyrot-Lackmann On the electronic structure of liquid transitional metals , 1967 .

[72]  T. Ala‐Nissila,et al.  Energetics and diffusion paths of gallium and arsenic adatoms on flat and stepped GaAs(001) surfaces , 1999 .

[73]  B. Orr,et al.  Ga-rich GaAs(001) surfaces observed by STM during high-temperature annealing in MBE , 2003 .

[74]  Haydn N. G. Wadley,et al.  Analytic bond-order potential for predicting structural trends across the sp-valent elements , 2005 .

[75]  J. Cochran,et al.  Velocity of sound and acoustic attenuation in pure gallium single crystals , 1971 .

[76]  P. Cohen,et al.  Mass‐action control of AlGaAs and GaAs growth in molecular beam epitaxy , 1985 .

[77]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[78]  H. Wadley,et al.  Modified charge transfer-embedded atom method potential for metal/metal oxide systems , 2004 .

[79]  J. Inoue,et al.  Orbital symmetrisation of the recursion method , 1987 .

[80]  Scheffler,et al.  GaAs equilibrium crystal shape from first principles. , 1996, Physical review. B, Condensed matter.

[81]  Lee,et al.  GaAs(001) surface under conditions of low As pressure: evidence for a novel surface geometry , 2000, Physical review letters.

[82]  Zhang,et al.  Chemical potential dependence of defect formation energies in GaAs: Application to Ga self-diffusion. , 1991, Physical review letters.

[83]  Pashley Electron counting model and its application to island structures on molecular-beam epitaxy grown GaAs(001) and ZnSe(001). , 1989, Physical review. B, Condensed matter.

[84]  Northrup,et al.  Structure of GaAs(001) surfaces: The role of electrostatic interactions. , 1994, Physical review. B, Condensed matter.

[85]  D. Chadi,et al.  Atomic structure of GaAs(100)‐(2×1) and (2×4) reconstructed surfaces , 1987 .

[86]  Che Ting Chan,et al.  A transferable tight-binding potential for carbon , 1992 .

[87]  C. Lanczos An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .

[88]  B. A. Joyce,et al.  Direct observation of anisotropic step activity on GaAs(001) , 1999 .

[89]  J. E. Hudson,et al.  High temperature negative ions: Electron impact of As4 vapor , 1973 .

[90]  Makoto Itoh,et al.  Atomic-scale homoepitaxial growth simulations of reconstructed III–V surfaces , 2001 .

[91]  Electronic charge densities and the recursion method , 1984 .

[92]  David G. Pettifor,et al.  Analytic bond-order potential for open and close-packed phases , 2002 .