Probing galaxy formation with TeV gamma ray absorption

Abstract We present here the extragalactic background light (EBL) predicted by semi-analytic models of galaxy formation, and show how measurements of the absorption of gamma rays of ∼ TeV energies via pair production on the EBL can probe cosmology and the formation of galaxies. Semi-analytic models permit a physical treatment of the key processes of galaxy formation - including gravitational collapse and merging of dark matter halos, gas cooling and dissipation, star formation, supernova feedback and metal production - and have been shown to reproduce key observations at low and high redshift. Using this approach, we investigate the consequences of variations in input assumptions such as the stellar initial mass function and the underlying cosmology. We conclude that observational studies of the absorption of ∼ 10−2–102 TeV gamma rays will help to constrain the star formation history of the universe, and the nature and extent of the extinction of starlight due to dust and reradiation of the absorbed energy at infrared wavelengths.

[1]  Carlos S. Frenk,et al.  A recipe for galaxy formation , 1994 .

[2]  S. Charlot,et al.  Spectral evolution of stellar populations using isochrone synthesis , 1993 .

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  R. B. Partridge,et al.  ARE YOUNG GALAXIES VISIBLE. II. THE INTEGRATED BACKGROUND. , 1967 .

[5]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[6]  E. Hivon,et al.  Semi‐analytic modelling of galaxy evolution in the IR/submm range , 1997, astro-ph/9710340.

[7]  L. Danese,et al.  Luminosity Evolution and Dust Effects in Distant Galaxies: Implications for the Observability of the Early Evolutionary Phases , 1994 .

[8]  E. Phinney,et al.  Constraints on the Extragalactic Background Light from Gamma-Ray Observations of High-Redshift Quasars , 1996 .

[9]  Greenbelt,et al.  On the Absorption of High-Energy Gamma-Rays by Intergalactic Infrared Radiation , 1997 .

[10]  F. Stecker,et al.  Estimate of the intergalactic infrared radiation field from γ-ray observations of the galaxy Mrk421 , 1994, Nature.

[11]  C. S. Frenk,et al.  The Epoch of Galaxy Formation , 1997, astro-ph/9703111.

[12]  S. Biller IR limits, pregalactic stars, neutrino decay and quantum gravity , 1999 .

[13]  Hipparcos Parallaxes and the Cepheid Distance Scale , 1997, astro-ph/9707091.

[14]  G. Kauffmann,et al.  The formation and evolution of galaxies within merging dark matter haloes , 1993 .

[15]  Y. Yoshii,et al.  Galactic evolution and cosmology - Probing the cosmological deceleration parameter , 1988 .

[16]  Hilo,et al.  Unveiling Dust-enshrouded Star Formation in the Early Universe: a Sub-mm Survey of the Hubble Deep Field , 1998, astro-ph/9806297.

[17]  University of Sydney,et al.  Dust in high redshift galaxies , 1997 .

[18]  C. Baugh,et al.  Evolution of the Hubble sequence in hierarchical models for galaxy formation , 1996, astro-ph/9602085.

[19]  R. Gould,et al.  Pair production in photon-photon collisions. , 1967 .

[20]  O. C. de Jager,et al.  TeV gamma rays from 3C 279 - A possible probe of origin and intergalactic infrared radiation fields , 1992 .

[21]  The Near-Infrared Number Counts and Luminosity Functions of Local Galaxies , 1998, astro-ph/9801132.

[22]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[23]  Space Science Reviews , 1962, Nature.

[24]  J. Holtzman,et al.  Cold dark matter variant cosmological models — I. Simulations and preliminary comparisons , 1997, astro-ph/9712142.

[25]  Glenn E. Miller,et al.  The Initial mass function and stellar birthrate in the solar neighborhood , 1979 .

[26]  J. Dunlop,et al.  High-redshift star formation in the Hubble Deep Field revealed by a submillimetre-wavelength survey , 1998, Nature.

[27]  D. Calzetti Reddening and star formation in starburst galaxies , 1996, astro-ph/9610184.

[28]  B. Madore,et al.  The IRAS bright galaxy sample. II - The sample and luminosity function , 1987 .