The enigmatic Messinian-Pliocene section of Cuevas del Almanzora (Vera Basin, SE Spain) revisited erosional features and strontium isotope ages

Abstract The Cuevas del Almanzora section was, in the late seventies, the focus of a discussion because of alleged continuous marine Messinian to Pliocene sedimentation. However, a discontinuity has been shown to exist in the shape of laminated strata including the late Messinian brackish/ lacustrine “Lago Mare” biofacies. More recently, Benson and Rakic-El Bied (1991) concluded that the section is still one of the best biostratigraphic successions for the western Mediterranean in which to document terminal Miocene events, but that it entirely has an early Messinian age (i.e. it antedates deposition of the main evaporites). This paper presents strontium isotope ages indicating that the “classic” threefold division in an earlier marine Messinian, a “Lago Mare”, and a Pliocene interval (sensu Geerlings et al., 1980; Cita et al., 1980) should be maintained. Moreover, the Sr isotopic composition of the euryhaline Cyprideis ostracodes from the “Lago Mare” laminites is similar to those from central Mediterranean basins. This stresses the importance of late Messinian water exchange between the Vera Basin and the then enclosed Mediterranean. It thus refutes the opinion of Benson and Rakic-El Bied (1991) that this interval is a local facies, of no particular stratigraphic importance. A time gap of up to ∼0.8 Ma between the youngest marine strata of the Messinian and the overlying Pliocene provides a maximum timing for the duration of the Messinian salinity crisis during which very little net sedimentation occurred, compared to coeval deposits in, for example, the nearby Nijar and Sorbas basins. In the Cuevas section an inconspicuous, and hitherto overlooked, erosional gap has been observed. This separates the “Lago Mare” marls from the Pliocene marls. More field observations have been made and are discussed in the light of existing interpretations, in order to demonstrate the importance of more widespread erosion in the Vera Basin. Gypsum-containing mass-flow deposits, filling up a late Messinian palaeorelief in the Garrucha area, are shown to be derived from the basin. These probably continue offshore as feeder channels related to a late Messinian sea-level fall. A holistic approach of a key section, thereby not overlooking the regional geology, is a necessary step to be made before far-reaching claims can be made about its interregional significance.

[1]  P. Beek,et al.  Flexural interaction and the dynamics of neogene extensional Basin formation in the Alboran-Betic region , 1992 .

[2]  R. E. Denison,et al.  Variation of seawater 87Sr/86Sr throughout Phanerozoic time , 1982 .

[3]  M. McCulloch,et al.  Sr isotope constraints on the Mediterranean environment at the end of the Messinian salinity crisis , 1989, Nature.

[4]  K. Hsü,et al.  Alpine-Mediterranean geodynamics , 1982 .

[5]  F. Jorissen Benthic foraminifera from the Adriatic Sea : principles of phenotypic variation , 1988 .

[6]  R. H. Benson,et al.  An important current reversal (influx) in the Rifian Corridor (Morocco) at the Tortonian-Messinian boundary: The end of Tethys Ocean , 1991 .

[7]  Lucien Montadert,et al.  History of the Mediterranean salinity crisis , 1977, Nature.

[8]  A. Maldonado,et al.  Sea Valleys and Related Depositional Systems in the Gulf of Lion and Ebro Continental Margins (1) , 1991 .

[9]  D. Hodell Editorial: Progress and paradox in strontium isotope stratigraphy , 1994 .

[10]  DOUGLAS F. Williams,et al.  Strontium-calcium ratios in Cenozoic planktonic foraminifera , 1982 .

[11]  W. Berggren,et al.  The Neogene: Part 2 Neogene geochronology and chronostratigraphy , 1985, Geological Society, London, Memoirs.

[12]  D. Müller,et al.  37. STRONTIUM ISOTOPIC RATIOS AS FLUID TRACERS IN MESSINIAN EVAPORITES OF THE TYRRHENIAN SEA (WESTERN MEDITERRANEAN SEA)1 , 1990 .

[13]  C. Montenat,et al.  Continuité ou discontinuité de sémentation marine mio-pliocène en Méditerranée occidentale. L'example du bassin de vera (Espagne méridionale) , 1976 .

[14]  W. Ryan,et al.  Late Miocene Desiccation of the Mediterranean , 1973, Nature.

[15]  B. Savoye,et al.  The Messinian event on the margin of the Mediterranean Sea in the Nice area, southern France , 1991 .

[16]  D. Rio,et al.  40. BIOMAGNETOSTRATIGRAPHIC CORRELATIONS FROM LEG 107 IN THE TYRRHENIAN SEA1 , 1990 .

[17]  D. DePaolo Detailed record of the Neogene Sr isotopic evolution of seawater from DSDP Site 590B. [Deep Sea Drilling Project] , 1986 .

[18]  C. Beets,et al.  87Sr/86Sr dating of coralline algal limestones and its implications for the tectono-stratigraphic evolution of the eastern Prebetic (Spain) , 1992 .

[19]  D. Müller Pliocene Transgression in the Western Mediterranean Sea: Strontium Isotopes from Cuevas Del Almanzora (Se Spain) , 1993 .

[20]  J. Delgado,et al.  Late Miocene globorotaliid event-stratigraphy and biogeography in the NE-Atlantic and Mediterranean , 1993 .

[21]  R. H. Benson,et al.  The Messinian parastratotype at Cuevas de Almanzora, Vera Basin, SE Spain; refutation of the deep-basin, shallow-water hypothesis? , 1991 .

[22]  G. Clauzon,et al.  Age et durèe de la crise de salinitè messinienne , 1994 .

[23]  A. Chivas,et al.  Paleoenvironment of the Messinian Mediterranean "Lago Mare" from Strontium and Magnesium in Ostracode Shells , 1988 .

[24]  D. Dahl,et al.  The Cenozoic seawater 87Sr/86Sr curve: Data review and implications for correlation of marine strata , 1988 .

[25]  H. V. D. Poel Foraminiferal biostratigraphy and palaeoenvironments of the Miocene-Pliocene Carboneras-Nijar Basin (SE Spain) , 1992 .

[26]  P. Deckker An account of the techniques using ostracodes in palaeolimnology in Australia , 1988 .

[27]  D. Müller,et al.  Origin and age of the Mediterranean Messinian evaporites : implications from Sr isotopes , 1991 .

[28]  D. Mueller,et al.  Application of strontium isotopes to late Miocene-early Pliocene stratigraphy , 1988 .

[29]  Aleria Groupe d'Etude de la Marge Continentale Le canal de Corse et les bassins nord-tyrrhéniens au Miocène supérieur et terminal (Messinien) ; leur évolution plio-quaternaire , 1980 .

[30]  D. V. Harten Cyprideis baetica n. sp. (Ostracoda, Cytheridae) from the Miocene of southeastern Spain , 1975 .

[31]  F. Hilgen Extension of the astronomically calibrated (polarity) time scale to the Miocene/Pliocene boundary , 1991 .

[32]  A. Baksi A geomagnetic polarity time scale for the period 0–17 Ma, based on 40Ar/39Ar plateau ages for selected field reversals , 1993 .

[33]  Pierre Bordet,et al.  The Betic segment of the lithospheric Trans-Alboran shear zone during the Late Miocene , 1988 .

[34]  C. Montenat,et al.  Originalité géodynamique des bassins néogènes du domaine bétique oriental (Espagne) , 1987 .

[35]  A. Chivas,et al.  Strontium isotope variations in single ostracod valves from the Gulf of Carpentaria, Australia: A palaeoenvironmental indicator , 1989 .

[36]  R. H. Benson,et al.  Stable isotope stratigraphy of latest Miocene sequences in northwest Morocco: the Bou Regreg section , 1989 .

[37]  K. Kastens Did glacio-eustatic sea level drop trigger the Messinian salinity crisis? New evidence from Ocean Drilling Program Site 654 in the Tyrrhenian Sea , 1992 .

[38]  J. Edmond,et al.  The strontium isotope budget of the modern ocean , 1989 .

[39]  J. Veizer Strontium Isotopes in Seawater through Time , 1989 .

[40]  L. Marle Bathymetric distribution of benthic foraminifera on the Australian-Irian Jaya continental margin, eastern Indonesia , 1988 .

[41]  Jean-Marie Rouchy,et al.  Late Miocene events in the Mediterranean as recorded by carbonate-evaporice relations , 1992 .

[42]  J. A. Vera,et al.  Stratigraphic record and palaeogeographical context of the Neogene basins in the Betic Cordillera, Spain , 1992 .