Loss of p53 in enterocytes generates an inflammatory microenvironment enabling invasion and lymph node metastasis of carcinogen-induced colorectal tumors.

[1]  M. Roizen,et al.  Hallmarks of Cancer: The Next Generation , 2012 .

[2]  Stefan Wirtz,et al.  Confocal laser endomicroscopy and narrow-band imaging-aided endoscopy for in vivo imaging of colitis and colon cancer in mice , 2011, Nature Protocols.

[3]  J. M. Mullin,et al.  Epithelial Tight Junctional Changes in Colorectal Cancer Tissues , 2011, TheScientificWorldJournal.

[4]  Steffen Jung,et al.  CKIα ablation highlights a critical role for p53 in invasiveness control , 2011, Nature.

[5]  J. Imura,et al.  GROα promotes invasion of colorectal cancer cells. , 2010, Oncology reports.

[6]  F. Greten,et al.  Ink4a/Arf and oncogene-induced senescence prevent tumor progression during alternative colorectal tumorigenesis. , 2010, Cancer cell.

[7]  D. Artis,et al.  Intestinal bacteria and the regulation of immune cell homeostasis. , 2010, Annual review of immunology.

[8]  M. Karin,et al.  Immunity, Inflammation, and Cancer , 2010, Cell.

[9]  Umar Mahmood,et al.  Development of a mouse model for sporadic and metastatic colon tumors and its use in assessing drug treatment , 2010, Proceedings of the National Academy of Sciences.

[10]  F. Greten,et al.  IKK/NF‐κB and STAT3 pathways: central signalling hubs in inflammation‐mediated tumour promotion and metastasis , 2009, EMBO reports.

[11]  J. Budczies,et al.  Invasion associated up‐regulation of nuclear factor κB target genes in colorectal cancer , 2009, Cancer.

[12]  D. Meek Tumour suppression by p53: a role for the DNA damage response? , 2009, Nature Reviews Cancer.

[13]  A. Levine,et al.  The first 30 years of p53: growing ever more complex , 2009, Nature Reviews Cancer.

[14]  Jian Yu,et al.  PUMA suppresses intestinal tumorigenesis in mice. , 2009, Cancer research.

[15]  J. Pollard,et al.  Microenvironmental regulation of metastasis , 2009, Nature Reviews Cancer.

[16]  R. Weinberg,et al.  Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits , 2009, Nature Reviews Cancer.

[17]  Ozge Canli,et al.  gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. , 2009, Cancer cell.

[18]  C. Prinz,et al.  Detection of cholangiocarcinoma in vivo using miniprobe-based confocal fluorescence microscopy. , 2008, Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association.

[19]  M. Vieth,et al.  Miniprobe confocal laser microscopy for the detection of invisible neoplasia in patients with Barrett’s oesophagus , 2008, Gut.

[20]  Craig Murdoch,et al.  The role of myeloid cells in the promotion of tumour angiogenesis , 2008, Nature Reviews Cancer.

[21]  P. Allavena,et al.  Cancer-related inflammation , 2008, Nature.

[22]  Nobuyuki Tanaka,et al.  p53 regulates glucose metabolism through an IKK-NF-κB pathway and inhibits cell transformation , 2008, Nature Cell Biology.

[23]  Eduardo Sontag,et al.  Transcriptional control of human p53-regulated genes , 2008, Nature Reviews Molecular Cell Biology.

[24]  E. Bandrés,et al.  TWIST1 Overexpression is Associated with Nodal Invasion and Male Sex in Primary Colorectal Cancer , 2008, Annals of Surgical Oncology.

[25]  A. Sparks,et al.  The Genomic Landscapes of Human Breast and Colorectal Cancers , 2007, Science.

[26]  M. Neurath,et al.  High resolution colonoscopy in live mice , 2006, Nature Protocols.

[27]  G. Evan,et al.  The pathological response to DNA damage does not contribute to p53-mediated tumour suppression , 2006, Nature.

[28]  T. Nagayasu,et al.  Expression of p-STAT3 in human colorectal adenocarcinoma and adenoma; correlation with clinicopathological factors , 2005, Journal of Clinical Pathology.

[29]  Michael Karin,et al.  IKKβ Links Inflammation and Tumorigenesis in a Mouse Model of Colitis-Associated Cancer , 2004, Cell.

[30]  Daniel Metzger,et al.  Tissue‐specific and inducible Cre‐mediated recombination in the gut epithelium , 2004, Genesis.

[31]  M. Karin,et al.  IkappaB-kinasebeta-dependent NF-kappaB activation provides radioprotection to the intestinal epithelium. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[32]  L. Benjamin,et al.  Angiogenesis: Tumorigenesis and the angiogenic switch , 2003, Nature Reviews Cancer.

[33]  William C Hahn,et al.  Rules for making human tumor cells. , 2002, The New England journal of medicine.

[34]  D. Gumucio,et al.  cis Elements of the Villin Gene Control Expression in Restricted Domains of the Vertical (Crypt) and Horizontal (Duodenum, Cecum) Axes of the Intestine* , 2002, The Journal of Biological Chemistry.

[35]  S. Chae,et al.  Coexpression of MUC1 with p53 or MUC2 correlates with lymph node metastasis in colorectal carcinomas. , 2002, Journal of Korean medical science.

[36]  A. Berns,et al.  Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer , 2001, Nature Genetics.

[37]  H. Clevers,et al.  APC, Signal transduction and genetic instability in colorectal cancer , 2001, Nature Reviews Cancer.

[38]  L. Donehower,et al.  Tumorigenesis in the multiple intestinal neoplasia mouse: redundancy of negative regulators and specificity of modifiers. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[39]  R. Miller,et al.  Increased tight junctional permeability is associated with the development of colon cancer. , 1999, Carcinogenesis.

[40]  N. Perkins,et al.  Transcriptional Cross Talk between NF-κB and p53 , 1999, Molecular and Cellular Biology.

[41]  D. Winton,et al.  Msh2 status modulates both apoptosis and mutation frequency in the murine small intestine. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[42]  E. Lander,et al.  Effects of p53 mutations on apoptosis in mouse intestinal and human colonic adenomas. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Clarke Ar,et al.  Interaction between murine germline mutations in p53 and APC predisposes to pancreatic neoplasia but not to increased intestinal malignancy. , 1995 .

[44]  M. Cummings,et al.  Interaction between murine germline mutations in p53 and APC predisposes to pancreatic neoplasia but not to increased intestinal malignancy. , 1995, Oncogene.

[45]  B. Vogelstein,et al.  A genetic model for colorectal tumorigenesis , 1990, Cell.

[46]  E. E. Gresch Genetic Alterations During Colorectal-Tumor Development , 1989 .