A semigroup-like Property for Discrete Mittag-Leffler Functions

AbstractDiscrete Mittag-Leffler function Eᾱ(λ,z) of order 0 < α ≤ 1, E1̄(λ,z)=(1-λ)-z, λ ≠ 1, satisfies the nabla Caputo fractional linear difference equation C∇0αx(t)=λx(t),x(0)=1,t∈ℕ1={1,2,3,…}. Computations can show that the semigroup identity Eᾱ(λ,z1)Eᾱ(λ,z2)=Eᾱ(λ,z1+z2) does not hold unless λ = 0 or α = 1. In this article we develop a semigroup property for the discrete Mittag-Leffler function Eᾱ(λ,z) in the case α ↑ 1 is just the above identity. The obtained semigroup identity will be useful to develop an operator theory for the discrete fractional Cauchy problem with order α ∈ (0, 1).

[1]  A. Peterson,et al.  Advances in Dynamic Equations on Time Scales , 2012 .

[2]  I. Podlubny Fractional differential equations , 1998 .

[3]  H. Srivastava,et al.  THEORY AND APPLICATIONS OF FRACTIONAL DIFFERENTIAL EQUATIONS. NORTH-HOLLAND MATHEMATICS STUDIES , 2006 .

[4]  Thabet Abdeljawad,et al.  On Riemann and Caputo fractional differences , 2011, Comput. Math. Appl..

[5]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[6]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations, Volume 204 (North-Holland Mathematics Studies) , 2006 .

[7]  George A. Anastassiou,et al.  Foundations of nabla fractional calculus on time scales and inequalities , 2010, Comput. Math. Appl..

[8]  Paul W. Eloe,et al.  DISCRETE FRACTIONAL CALCULUS WITH THE NABLA OPERATOR , 2009 .

[9]  Delfim F. M. Torres,et al.  Discrete-time fractional variational problems , 2010, Signal Process..

[10]  George A. Anastassiou,et al.  Principles of delta fractional calculus on time scales and inequalities , 2010, Math. Comput. Model..

[11]  F. Atici,et al.  Modeling with fractional difference equations , 2010 .

[12]  M. Birkner,et al.  Blow-up of semilinear PDE's at the critical dimension. A probabilistic approach , 2002 .

[13]  P. Eloe,et al.  Initial value problems in discrete fractional calculus , 2008 .

[14]  R. Magin Fractional Calculus in Bioengineering , 2006 .

[15]  K. Diethelm,et al.  Fractional Calculus: Models and Numerical Methods , 2012 .

[16]  P. Eloe,et al.  A transform method in discrete fractional calculus , 2007 .

[17]  Nien Fan Zhang,et al.  On a new definition of the fractional difference , 1988 .

[18]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .