Spatial combinatorics

We define and study a spatial (infinite-dimensional) counterpart of Stirling numbers. In classical combinatorics, the Pochhammer symbol (m)n can be extended from a natural number m ∈ N to the falling factorials (z)n = z(z−1) · · · (z−n+1) of an argument z from F = R or C, and Stirling numbers of the first and second kinds are the coefficients of the expansions of (z)n through z k, k ≤ n and vice versa. When taking into account spatial positions of elements in a locally compact Polish space X, we replace N by the space of configurations—discrete Radon measures γ = ∑ i δxi on X, where δxi is the Dirac measure with mass at xi. The spatial falling factorials (γ)n := ∑ i1 ∑ i2 6=i1 · · · ∑ in 6=i1,...,in 6=in−1 δ(xi1 ,xi2 ,...,xin ) can be naturally extended to mappings M (1)(X) 3 ω 7→ (ω)n ∈ M (n)(X), where M (n)(X) denotes the space of F-valued, symmetric (for n ≥ 2) Radon measures on Xn. There is a natural duality between M (n)(X) and the space CF (X) of F-valued, symmetric continuous functions on Xn with compact support. The Stirling operators of the first and second kind, s(n, k) and S(n, k), are linear operators, acting between spaces CF (X) and CF (X) such that their dual operators, acting from M (k)(X) into M (n)(X), satisfy (ω)n = ∑n k=1 s(n, k) ∗ω⊗k and ω⊗n = ∑n k=1 S(n, k) (ω)k, respectively. In the case where X has only a single point, the Stirling operators can be identified with Stirling numbers. We derive combinatorial properties of the Stirling operators, present their connections with a generalization of the Poisson point process and with the Wick ordering under the canonical commutation relations.

[1]  T. Kuna,et al.  The full moment problem on subsets of probabilities and point configurations , 2018, Journal of Mathematical Analysis and Applications.

[2]  D. Finkelshtein,et al.  An infinite dimensional umbral calculus , 2017, Journal of Functional Analysis.

[3]  E. Lytvynov,et al.  Fock representations of Q-deformed commutation relations , 2016, 1603.03075.

[4]  Julia Kastner,et al.  Measures And Probabilities , 2016 .

[5]  Ute Dreher,et al.  Measure And Integration Theory , 2016 .

[6]  Ulrike Goldschmidt,et al.  An Introduction To The Theory Of Point Processes , 2016 .

[7]  H. W. Gould,et al.  Combinatorial Identities for Stirling Numbers: The Unpublished Notes of H W Gould , 2015 .

[8]  T. Mansour,et al.  Commutation Relations, Normal Ordering, and Stirling Numbers , 2015 .

[9]  Alfred Schreiber Multivariate Stirling polynomials of the first and second kind , 2015, Discret. Math..

[10]  T. Kuna,et al.  On a spectral representation for correlation measures in configuration space analysis , 2006, math/0608343.

[11]  Tobias Kuna,et al.  HARMONIC ANALYSIS ON CONFIGURATION SPACE I: GENERAL THEORY , 2002 .

[12]  Bai-Lian Li,et al.  The Geometry of Ecological Interactions: Simplifying Spatial Complexity , 2002 .

[13]  E. Fadell,et al.  Geometry and Topology of Configuration Spaces , 2000 .

[14]  Sergio Albeverio,et al.  Analysis and Geometry on Configuration Spaces , 1998 .

[15]  M. Kibler,et al.  Normal ordering for deformed boson operators and operator-valued deformed Stirling numbers , 1992, math-ph/0001001.

[16]  Roland Speicher,et al.  An example of a generalized Brownian motion , 1991 .

[17]  Robin L. Hudson,et al.  Quantum Ito's formula and stochastic evolutions , 1984 .

[18]  D. Surgailis On multiple Poisson stochastic integrals and associated Markov semigroups , 1984 .

[19]  Mourad E. H. Ismail,et al.  A -umbral calculus , 1981 .

[20]  R. Menikoff,et al.  Representations of a local current algebra: Their dynamical determination , 1975 .

[21]  A. Lenard,et al.  States of classical statistical mechanical systems of infinitely many particles. II. Characterization of correlation measures , 1975 .

[22]  Jacob Katriel,et al.  Combinatorial aspects of boson algebra , 1974 .

[23]  Gerald A. Goldin,et al.  Nonrelativistic current algebra in the N / V limit , 1974 .

[24]  A. Lenard,et al.  Correlation functions and the uniqueness of the state in classical statistical mechanics , 1973 .

[25]  J. Mecke,et al.  Stationäre zufällige Maße auf lokalkompakten Abelschen Gruppen , 1967 .

[26]  A. Cohen On random fields , 1967 .

[27]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .